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INTRODUCTION 
 
 We consider the application of the Monte Carlo method to time dependent non 
stationary problems.  As an example we consider the diffusion equation: 
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which can represent the time dependence of a variety of heat and mass transport problems 
with α as the diffusivity coefficient.  The solution of this equation is a function u, which 
depends on both the spatial coordinates and on time.  Consequently its solution depends 
on the identification of appropriate initial and boundary conditions.   

Let us consider a lattice that is inscribed in the domain D in which it is required to 
find the solution u(P, t) at point P, which satisfies the Dirichlet boundary condition on the 
boundary C: 
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or the Neumann boundary condition on C: 
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or a mixed type of boundary condition: 
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as well as the initial condition: 
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TIME DEPENDENT RANDOM WALK 
 
 We consider a two dimensional form of Eqn. 1 as: 
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We write the finite difference approximation of the Laplacian 2∇  operator in the 

x direction: 
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Similarly, in the y direction: 
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and for the time derivative: 
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where the i subscript represents the x coordinate, the j subscript represents the y 
coordinate, and the subscript k represents the time coordinate. 

Let us choose: 
 
    hyx ≡∆≡∆ , 
 
thus we can rewrite Eqns. 7, 8 as: 
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In two-dimensional problems we can add Eqns. 10 and 11 and use Eqn. 9 to yield 

the finite difference form for the diffusion equation as: 
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Solving for ui,j,k+1, we get: 
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Combining terms yields: 
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This implies that each internal point at the time step (k+1) is a weighted average 

over the surrounding node points at the previous time step k in addition to a contribution 
initially from the initial condition and thereafter from each previous increment in time. 

This equation can be simplified by choosing the following relation between the 
time scale and the lattice constant: 
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or: 
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Making that choice, simplifies Eqn. 14 into: 
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RANDOM WALK MODEL 
 

The averaging process in Eqn. 17 is a characteristic of potential problems in 
general.  This implies a random with equal probabilities of moving from a mesh point to 
its four immediate neighbors in two dimensions, and to its six immediate neighbors in 
three dimensions with the initial condition added at each node point in the walk. 

We consider that the random walk takes exactly one unit of time to move between 
two neighboring sites. We assume that the random walk starts from a cross road point P, 



reaches one of the neighboring points with a probability of ¼ and continues this way until 
it reaches the boundary where it stops there.  The process is allowed to continue for only 
k steps.  If after k steps the random walk does not reach the boundary, but instead reaches 
an internal point, then a score for this point is scored as the initial condition at that 
internal point given by Eqn. 5: 
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If, on the other hand the random walk does reach the boundary, then he 
accumulates a score given by the boundary condition: 
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As shown in the procedure of Fig. 1, n random walks are generated of length k 
each giving the time dependence of the solution to the diffusion process. 
 
! Time_dependent_diffusion_equation for 
 program Time_dependent_diffusion_equation  
! Two-dimensional Diffusion Equation Solver, with profile generation 
! Diffusion Equation in two Dimensions, Cartesian Coordinates 
!  du/dt = d2u/dx2 + d2u/dy2 
! Solution by Monte Carlo random walk on a rectangular surface 
! with Dirichlet boundary conditions along the boundaries 
! and initial condition within the boundary 
! M. Ragheb 
! Random walk with equal step sizes 
 dimension score(31,31), temp(31,31) 
 dimension  initial_condition(30,30) 
 real(8) elapsed_time 
 character*1 tab 
 elapsed_time=timef() 
 tab=char(9) 
! Store output matrix for visualization using Excel 
! open (unit=10, file='temp_profile.xls', status='unknown') 
! Store output matrix for visualization using the Array visualizer 
 open (unit=10, file='temp_profile.agl', status='unknown') 
! m1 = number of mesh points in x-direction 
 m1=31 
! n1 = number of mesh points in y-direction 
 n1=31 
! step probabilities in x+:p1, y+:p2, x-:p3 and y-:p4 directions 
 p1=0.25 
 p2=0.25 
 p3=0.25 
 p4=0.25 
! Construct cumulative distribution function for random walk 
 p12=p1+p2 
 p123=p1+p2+p3 
! number of random walks: nsamp 
 nsamp=1000 
! Boundary conditions on the rectangle 
! left t1=t(0,y), bottom t2=t(x,0), right t3=t(m1,y), upper t4=t(x,n1) 
 t1=100. 
 t2=0. 
 t3=0. 
 t4=100. 



! Initial conditions within boundary 
 do i=2,30,1 
  do j=2,30,1 
   initial_condition(i,j)=0.0 
  end do 
 end do 
 xsamp=nsamp 
! Allowed number of time steps 
 ktotal=10 
 do 30 m=2,30 
 do 30 n=2,30 
! Score counter 
 score(m,n)=0.0 
 do 77 ncount=1,nsamp 
! Start random walk here 
! Initialize counters 
 i=m 
 j=n 
! History counter 
! Move particle ktotal steps 
 do 66 kk=1,ktotal 
! Initiate random walk 
! i=m 
! j=n 
 call random(r) 
! Sample cumulative distribution function for random walk 
! Move one step to the right 
  if (r le.p1) then  
  i=i+1 
 goto 11 
! Move one step up 
 else if (r le.p12) then  
 j=j+1 
 goto 11 
! Move one step left 
 else if (r le.p123) then  
 i=i-1 
 goto 11 
 else 
! Move one step down 
 j=j-1 
 goto 11 
 end if 
! Check for random walk reaching boundary 
! Check whether lower boundary is reached 
11 if (j.eq.1) then  
 score(m,n) = score(m,n) + t2 
 goto 88 
! Check whether right boundary is reached 
 else if (i.eq m1) then  
 score(m,n) = score(m,n) + t3 
 goto 88 
! Check whether upper boundary is reached 
 else if (j.eq.n1) then  
 score(m,n) = score(m,n) + t4 
 goto 88 
! Check whether left boundary is reached 
 else if (i.eq.1)  then  
 score(m,n) = score(m,n) + t1 
 goto 88 
 else 
 go to 66 



 end if 
88 temp(m,n)=score(m,n)/xsamp 
 go to 77 
66 continue 
! write(*,*)m,n,i,j 
 score(m,n)=score(m,n)+initial_condition(i,j) 
 temp(m,n)=score(m,n)/xsamp 
 
77 continue 
! Calculate solution at points of interest 
! Print results 
30 continue 
 write(*,*)'number of random walks=',nsamp 
! Boundary values 
 do 40 i=1,31 
  do 40 j=1,31 
!  bottom boundary 
  temp(i,1)=0.0 
!  top boundary 
  temp(i,31)=100.0 
!  left boundary 
  temp(1,j)=100.0 
!  right boundary 
  temp(31,j)=0.0 
40 continue  
 do 20 n=1,31 
 write(10,300) (temp(m,n),tab, m=1,31) 
! write(*,*) (temp(m,n),tab, m=1,31) 
20 continue 
300 format(31(e14.8,a1)) 
! elapsed_time=timef() 
 write(*,*) elapsed_time 
 stop 
 end 
 

Figure1. Procedure for a random walk to solve the time dependent diffusion equation 
with initial and boundary conditions. 

 
TIME DEPENDENT DIFFUSION EQUATION BENCHMARK 
 
 The procedure is tested using the geometry for the diffusion equation given in Fig. 
2.  As a problem whose solution is heuristically known, we consider that the boundary 
conditions are: 
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with an initial condition at all the internal non boundary points as: 
 
    0 5tu = = . 
 
 The solution to this problem should start at the initial value then as time evolves 
should reach an equilibrium situation with the boundary values covering the whole 
domain.  This is chosen as a suitable benchmark to test the Monte Carlo procedure.  The 
solution for the benchmark is shown for different numbers of time steps in Figs. 3-6 for k 



= 10, 100 1,000 and 10,000 time steps, or random chain lengths.  The approach of the 
solution from the initial condition to reaching the values at the boundaries at equilibrium 
after a large number of time steps can be readily observed. 
 
DIFFUSION EQUATION SOLUTION BY MONTE CARLO 
 

Having tested the procedure of what can be considered as a benchmark the 
procedure is now applied to another case involving different boundary conditions with 
the results shown in Figs. 7-10 for the time steps or random chain lengths of k = 10, 100, 
1,000 and 10,000 time steps.  The boundary conditions are in this case: 
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with an initial condition at all the internal non boundary points as: 
 
    0 5tu = = . 

 
 

Figure 2. Geometry for the solution of the diffusion equation. 
 



 
 

 
Figure 3. Diffusion Equation benchmark, number of time steps k=10. 

 

 
 



 
Figure 4. Diffusion Equation benchmark, number of time steps k=100. 

 

 
 

 
Figure 5. Diffusion Equation benchmark, number of time steps k=1,000. 



 

 
 

 
 

Figure 6. Diffusion Equation benchmark, number of time steps k=10,000.  Steady state 
equilibrium and exact solution are attained. 

 



 
 

 
 

Figure 7. Diffusion Equation benchmark, number of time steps k=10. 
 

 



 

 
Figure 8. Diffusion Equation benchmark, number of time steps k=100. 

 
 

 
 



 
 

Figure 9. Diffusion Equation benchmark, number of time steps k=1,000. 
 

 
 

 



 
Figure 10. Diffusion Equation benchmark, number of time steps k=10,000.  Equilibrium 

steady state solution. 
 
DISCUSSION 
 
 Random walk procedures can be used to solve a variety of problem involving 
mass and heat transport, where each step of the generated random walk corresponds to a 
single time step in the simulation.  The procedure described above can be generalized to 
more complex problems involving nonhomogeneous media, media with in internal 
sources and sinks and to mixed types of boundary conditions.  The areas of applications 
range from the study of purification processes and crystal formation involving adsorption 
and desorption to time dependent heat transport problems including varying medium 
properties and mixed types of boundary conditions. 
 
EXERCISES 
 
1. Modify the procedure for the solution of the Diffusion Equation to deal with the 
situation where an internal or external source is present corresponding to the time 
dependent Poisson’s equation with a mixed type of boundary condition: 
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2. Solve the case of a diffusion process in a nonuniform medium where; 
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