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INTRODUCTION  
 

The early part of the 18
th

 century saw the burgeoning of the field of theoretical 

fluid mechanics pioneered by Leonhard Euler and the father and son Johann and Daniel 

Bernoulli.    

We introduce the equations of continuity and conservation of momentum of fluid 

flow, from which we derive the Euler and Bernoulli equations.  The Bernoulli equation is 

the most famous equation in fluid mechanics.  Its significance is that when the velocity 

increases in a fluid stream, the pressure decreases, and when the velocity decreases, the 

pressure increases.    

The Bernoulli equation is applied to the airfoil of a wind machine rotor, defining 

the lift, drag and thrust coefficients and the pitching angle.  

 

 
 

Figure 1. Johannes Bernoulli, the father. 

 

THE MASS CONSERVATION OR CONTINUITY EQUATION  
 

The continuity equation of fluid mechanics expresses the notion that mass cannot 

be created nor destroyed or that mass is conserved.  It relates the flow field variables at a 

point of the flow in terms of the fluid density and the fluid velocity vector, and is given 

by:  

 

    .( ) 0V
t





 


     (1) 



 

 

 

We consider the vector identity resembling the chain rule of differentiation:  
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where the divergence operator is noted to act on a vector quantity, and the gradient 

operator acts on a scalar quantity.  

This allows us to rewrite the continuity equation as:  
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SUBSTANTIAL DERIVATIVE  
 

We can use the substantial derivative:  

 

    ( . )Convetive
Local

Derivative
Derivative

D
V

Dt t


  


    (4) 

 

where the partial time derivative is called the local derivative and the dot product term is 

called the convective derivative.  

In terms of the substantial derivative the continuity equation can be expressed as::  
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MOMENTUM CONSERVATION OR EQUATION OF MOTION  
 

Newton’s second law is frequently written in terms of an acceleration and a force 

vectors as:  
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A more general form describes the force vector as the rate of change of the 

momentum vector as:  
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Its general form is written in term of volume integrals and a surface integral over 

an arbitrary control volume v as:  
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where the velocity vector is:  
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The cartesian coordinates x, y and z components of the continuity equation are:  
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In this equation the product:  
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is a scalar and has no components.  

 

NAVIER STOKES EQUATIONS  
 

By using the divergence or Gauss’s theorem the surface integral can be turned 

into a volume integral:  
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The volume integrals over an arbitrary volume now yield:  
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These are known as the Navier-Stokes equations.  They apply to the unsteady, 



 

 

three dimensional flow of any fluid, compressible or incompressible, viscous or inviscid.  

In terms of the substantial derivative, the Navier-Stokes equations can be 

expressed as:  
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EULER EQUATIONS  
 

For a steady state flow the time partial derivatives vanish.  For inviscid flow the 

viscous terms are equal to zero.  In the absence of body forces the f
x
, f

y
, anf f

z
 terms 

disappear.  The Euler equations result as:  
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INVISCID COMPRESSIBLE FLOW  
 

For an inviscid flow without body forces, the momentum conservation equations 

of fluid mechanics are:  
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These equations can also be written as:  
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For steady flow the partial time derivative vanishes, and we can write:  
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Expanding the gradient term, we get:  

 

   

u u u p
u v w

x y z x

v v v p
u v w

x y z y

w w w p
u v w

x y z z

  

  

  

   
   

   

   
   

   

   
   

   

    (19) 

 

Rearranging, we get:  
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STREAMLINES DIFFERENTIAL EQUATIONS  
 

The definition of a streamline in a flow is that it is parallel to the velocity vector.  

Hence the cross product of the directed element of the streamline and the velocity vector 

is zero:  
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The cross product can be expanded in the form of a determinant as:  
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The vector being equal to zero, its components must be equal to zero yielding the 

differential equations for the streamline f(x,y,z) =0, as:  
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EULER’S EQUATION  
 

Multiplying the flow equations respectively by dx, dy and dz, we get:  
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Using the streamline differential equations, we can write:  
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The differentials of functions u = u(x,y,z), v = v(x,y,z), w =w (x,y,z) are:  
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This allows us to write:  
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Through integration we can write:  
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Adding the three last equations we get:  

 

   

2 2 2

2

1 1
( ) ( )

2

1 1
( )

2

p p p
d u v w dx dy dz

x y z

d V dp





  
     

  

 

  (29) 

 

From the last equation we can write a simple form of Euler’s equation as:  

 

   dp VdV         (30) 

 

Euler’s equation applies to an inviscid flow with no body forces.  It relates the 

change in velocity along a streamline dV to the change in pressure dp along the same 

streamline.  



 

 

  

BERNOULLI EQUATION, INCOMPRESSIBLE FLOW  
 

Considering the case of incompressible flow, we can use limit integration to yield:  
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The relation between pressure and velocity in an inviscid incompressible flow 

was enunciated in the form of Bernoulli’s equation, first presented by Euler:  
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This equation is the most famous equation in fluid mechanics.  Its significance is 

that when the velocity increases, the pressure decreases, and when the velocity decreases, 

the pressure increases.    

The dimensions of the terms in the equation are kinetic energy per unit volume.  

Even though it was derived from the momentum conservation equation, it is also a 

relation for the mechanical energy in an incompressible flow.  It states that the work done 

on a fluid by the pressure forces is equal to the change of kinetic energy of the flow.  In 

fact it can be derived from the energy conservation equation of fluid flow.  

The fact that Bernoulli’s equation can be interpreted as Newton’s second law or 

an energy equation illustrates that the energy equation is redundant for the analysis of 

inviscid, incompressible flow.  

 

ROTOR AIRFOIL GEOMETRY  
 

The sharp end of an airfoil shape at point B is designated as the trailing edge.  The 

leading edge is the locos of the point A of the nose of the airfoil profile that is the farthest 

from the trailing edge.  The distance L = AB is known as the chord of the profile, with 

AMB being the upper surface and ANB the lower surface.  

At any distance along the chord AB from the nose, points may be identified half 

way between the upper and lower surfaces whose locus is usually curved is called the 

camber line or median line of the airfoil section.  

The incidence angle i is the angle between the chord and the air speed vector V at 

infinite upstream.  The zero lift angle is the angle φ
0
 between the chord and the zero lift 

line.  

The lift angle is the angle φ between the zero lift line and the air speed vector V at 

infinite upstream.  It is conventional to take φ and i as positive and φ
0
 as negative.  The 



 

 

following relations hold:  
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Figure 2. Rotor airfoil geometry. 

 

Another rotor blade parameter is the maximum thickness h, which is sometimes 

expressed as a fraction of the chord length and is called the thickness/chord ratio or 

relative thickness. 

The relative thickness can range from 3-20 percent, with the common wind 

machine rotors values covering the range of 10-15 percent. 

The spot along the chord where the maximum thickness occurs in airfoils covers a 

range of 20 - 60 percent of the chord from the leading edge, and in wind machines rotors 

this is around 30 percent.   

 

FORCES ON A MOVING ROTOR IN A STILL ATMOSPHERE 
 

We can assume that the airfoil is at rest and the air moving at the same speed but 

in the opposite direction.  In this case the aerodynamic force exerted on the rotor will not 

change in magnitude.  The resultant force will depend only on the relative speed and the 

angle of attack.  To simplify the analysis, the airfoil is taken at rest in a moving stream of 

air in an infinite upstream speed V.   

The pressure of the air on the external surface of the airfoil will not be uniform 

due to the effect of the Bernoulli force.  On the upper surface there results a lower 

pressure, and on the lower surface an increase in the pressure.    

We can represent the pressure variation on the rotor surface by considering a line 

perpendicular to the airfoil profile surface whose magnitude is Kp
 
, given by:   
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where: 

 
0

p is the static pressureat thebaseof the perpendicular to the surface

p is the pressureat theinfiniteupstream

V is the speed at theinfiniteupstream

is thedensity at theinfiniteupstream

 

 

The value of Kp is negative for the points at the upper surface of the airfoil, and 

positive for the lower surface.   

 

 
 

Figure 3. Pressure profile on airfoil segment.  

 

The resultant thrust force FT is inclined with respect to the relative speed direction 

and is given by:  
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where: 

 
T

A is thearea equal to the product of thechord by thelengthof therotor

C is thetotal aeorodynamiccoefficient
 



 

 

 

The force F has two components.  The first component is parallel to the velocity 

vector or the drag force:  
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The second component is perpendicular to the velocity vector, or the lift force:  
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These forces are perpendicular and we can apply the Pythagorean Theorem 

leading to the thrust force as:  
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In addition:  
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where C
T
 is the thrust coefficient.  

 



 

 

 
 

Figure 4. Angle of attack and angle for an aircraft. 

 

 
 

Figure 5. Vortices formation behind an airfoil at a steep angle of attack. 

 



 

 

 
 

Figure 6. Flow separation and loss of lift at a steep angle of attack. 

 

 
 

Figure *7. Generation and loss of lift on an airfoil. 

 



 

 

 
 

Figure 8. Effect of angle of attack on lift and flow separation. 

 

AERODYNAMIC MOMENT  
 

If M is the aerodynamic moment of the force F relative to the leading edge, we 

can define a pitching moment coefficient C
m

 from the expression:  
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where: 

 .L is thechord length  

 

The aerodynamic forces on the rotor may be represented by a lift, a drag, and a 

pitching moment.  

At each value of the incidence angle there exists a particular point C about which 

the pitching moment of the aerodynamic force F is zero.  This unique point is called the 

center of pressure.  The aerodynamic effects on the airfoil section can be represented by 

the lift and the drag alone acting at that point.   

The position of the center of pressure relative to the leading edge is calculated 

from the ratio:  
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It is usually in the range of: 25 – 30 percent.  
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EXERCISE  
 

1. A wind rotor airfoil is placed in the air flow at sea level conditions with a free stream 

velocity of 10 m/s.  The density at standard sea level conditions is 1.23 kg/m
3

 and the 

pressure is 1.01 x 10
5

 Newtons/m
2

.  At a point along the rotor airfoil the pressure is 0.90 

x 10
5

 Newtons/m
2

.  By applying Bernoulli’s equation estimate the velocity at this point. 

2. The lift force on a rotor blade is given by: 21

2
L LF C AV . The drag force is given by: 

21

2
D DF C AV . Derive expressions for: 

a) The thrust force FT, 

b) The thrust coefficient CT. 


