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INTRODUCTION 
 
 Monte Carlo simulations require the sampling of various distributions at different 
steps in the simulation process. There exist a multitude of approximate algorithms that 
have been ingeniously devised to sample some specified functions. In other cases special 
sources need to be sampled for starting up the solution or to account for the boundary or 
initial conditions. 
 Sampling these distributions adequately depends upon correctly identifying the 
underlying probability density functions, deducing the corresponding cumulative 
distribution functions, and next inverting them to sample the source, the boundary or 
initial condition. Several geometric sources are considered to demonstrate the approach. 
 
SAMPLING ISOTROPIC SOURCES 
 
 We consider the sampling of an isotropic spherically symmetric source of 
particles or photons. In this case each element of solid angle receives the same 
contribution from the isotropic source as shown in Fig. 1. This means we have to sample 
the probability density function; 
 

   

2

2 2

sin( , )
4 4 4

sin( ) . ( ) .
2 2

d dS r d dp d d
r r

d dp d p d

θ θ φθ φ θ φ
π π π

θ θ φθ θ φ φ
π

Ω
= = =

= =
  (1) 

 

where: the element of solid angle 2
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Here the probability density function is separable into two probability density 
functions: 
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These probability density functions represent two independent random variables, 

and can be sampled separately. Setting: 
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Fig. 1: Sampling an isotropic spherically symmetric source. 
 
 
we can sample the azimuthal angle from: 
 
    1( ) 2φ ρ πρ=       (5) 
 
Setting: 
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or the polar angle can be sampled as: 
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Now that the polar and azimuthal angles have been sampled, we can determine the 
direction cosines u, v, and w for the particles or photons emanating from the isotropic 
source according to the simple relationships: 
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SAMPLING THE NORMAL OR GAUSSIAN DISTRIBUTION 
 
 Invoking the Central Limit Theorem one can generate a Normal of Gaussian 
variable in terms of a sequence of pseudo random variables uniformly distributed over 
the unit interval. For such a random variable the mean value is: 
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and the variance is: 
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Thus its standard deviation is: 
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According to the Central Limit Theorem, the random variable: 
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converges asymptotically with n to a Normal distribution with mean µ and variance σ2: 
N[µ,σ]: 
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 For the sampling of a uniform random distribution, we can substitute from Eqs. 9 
an 11 for the values of the mean and standard deviation as: 
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As a good approximation, we can take n=12 in Eqn. 13 to yield: 
 

          (14) 
12

1
6i

i
rξ

=

= −∑
 
which yields a very simple algorithm to generate a Normal or Gaussian variate: 
 

1. Generate a sequence of 12 random numbers ri, i=1,2, …, 12, over the unit 
interval. 

2. Let: , 
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=
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3. Report a sample: 'ξ µ ξσ= +  from 2[ , ]N µ σ . 

 
Sometimes the 90 percent error spread factor is used instead of the standard deviation as 
a parameter: 
 
    ' (1.645 )ξ µ ξ σ= + . 
 



 A procedure that generates a Normal random variable by the above-mentioned 
algorithm is shown in Fig. 2. It uses calls to a subroutine to reconstruct a Normal variable 
that is displayed in Fig. 3. 
 
! normal_gaussian_distribution.f90 
! Sampling the Normal or Gaussian distribution 
! M. Ragheb, Univ. of Illinois 
 program normal_gaussian_distribution 
 dimension e(100), freq(100) 
 integer :: trials = 100000 
 real x, e, freq, score 
 real :: xmean =10.0 
 real :: std_dev = 3.0 
 score = 1.0 
!   Initialize frequency distribution 
 do i=1,20 
  freq(i)=0.0 
 end do 
! Initialize bins 
 do i=1,20 
  xi=i 
   e(i)=xi 
 end do 
! open output file   
 open(44, file = 'random_out') 
!   Sample distribution 
 do i= 1, trials 
!   Sample x coordinate 
  call normal(xmean,std_dev,x,rr) 
!   Construct frequency distribution 
  if(x.LE.e(1))then  
   freq(1)=freq(1)+score 
  end if 
  do j=1,20 
   if((x.GT.e(j)).AND.(x.LE.e(j+1)))then 
   freq(j+1)=freq(j+1)+score 
   end if 
  end do 
 end do 
! Normalize frequency distribution and construct pdf 
 do i=1,20 
  freq(i)=freq(i)/trials 
 end do 
! Write results to output file 
 do i=1,20 
  write (44,100)e(i),freq(i) 
  write(*,*)e(i),freq(i) 
 end do 
100 format (2e14.8) 
 end 
 
 subroutine normal(xmean,std_dev,x,rr) 
! This subroutine generates a Normal or Gaussian random variable 
! with a mean value xmean and a standard deviation std_dev 
! mean value= xmean 
! standard deviation= std_dev 
! returned sampled point= x 
! 9o% error spread= s = 1.645*standard deviation 
 n=12 
 xn=n 
! s=1.645*std_dev 



 s=std_dev 
 const = sqrt (xn/12.0) 
 sum = 0.0 
 do i=1,n 
  call random(rr) 
  sum = sum + rr 
 end do 
 v=(sum-(xn/2.0))/const 
 x=xmean + v*s 
 return  
 end 
 

Fig. 2: Procedure to sample and display the Normal or Gaussian distribution. 
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Fig. 3: Sampled Normal or Gaussian distribution, N=100,000 trials. 
 
SAMPLING THE LOGNORMAL DISTRIBUTION 
 
 A distribution related to the Normal distribution is the Lognormal or 
Logarithmico-Normal distribution. If X is from 2( , )N µ σ , then Y=eX has the Lognormal 
distribution with a pdf: 
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An algorithm based on the Central Limit Theorem can thus be proposed to generate the 
Lognormal distribution: 
 

1. Generate a sequence of 12 random numbers ri, i=1,2, …, 12, over the unit 
interval. 

2. Let: , 
12

1
6i

i
rξ

=

= −∑
3. Generate a sample: X µ ξσ= +  from 2[ , ]N µ σ . 
4. Report Y=eX as a sample from the Lognormal distribution. 

 
A procedure using this algorithm is shown in Fig. 4, where a subroutine is called to 

generate the samples, and the ensuing Lognormal distribution is shown in Fig. 5. 
 
! lognormal_distribution.f90 
! Sampling the lolgnormal distribution 
! M. Ragheb, Univ. of Illinois 
 program lognormal_distribution 
 dimension e(101), freq(101) 
 integer :: trials = 1000000 
 real x, e, freq, score 
 real :: xmean =20.0 
 real :: std_dev = 3.0                          
 score = 1.0 
! Initialize frequency distribution 
 do i=1,100 
  freq(i)=0.0 
 end do 
! Initialize bins 
 do i=1,100 
  xi=i 
   e(i)=xi 
 end do 
! open output file   
 open(44, file = 'random_out') 
! Sample distribution 
 do i= 1, trials 
! Sample x coordinate 
  call lognormal(xmean,std_dev,x,rr) 
! Construct frequency distribution 
  if(x.LE.e(1))then  
   freq(1)=freq(1)+score 
  end if 
  do j=1,100 
   if((x.GT.e(j)).AND.(x.LE.e(j+1)))then 
   freq(j+1)=freq(j+1)+score 
   end if 
  end do 
 end do 
! Normalize frequency distribution and construct pdf 
 do i=1,100 
  freq(i)=freq(i)/trials 



 end do 
! Write results to output file 
 do i=1,100 
  write (44,100)e(i),freq(i) 
  write(*,*)e(i),freq(i) 
 end do 
100 format (2e14.8) 
 end 
 
 subroutine lognormal(xmean,std_dev,x,rr) 
! This subroutine generates a Lognormal random variable 
! from a normal distribution with zero mean and unit standard 
! deviation 
! mean value= xmean 
! standard deviation= std_dev 
! returned sampled point= x 
! 9o% error spread = s = 1.645*standard deviation 
 n=12 
 xn=n 
 xxmean= alog (xmean) 
 sstd_dev = alog (std_dev) 
! s=1.645*std_dev 
 s=sstd_dev 
 const = sqrt (xn/12.0) 
 sum = 0.0 
 do i=1,n 
  call random(rr) 
  sum = sum + rr 
 end do 
 v=(sum-(xn/2.0))/const 
 xx=xxmean + v*s 
 x=exp(xx) 
 return  
 end 
 

Fig. 4: Procedure for the sampling and display of the lognormal distribution. 
 

SAMPLING LINE SOURCES 
 
 Sampling different source geometrical configurations is encountered in many 
problems such as shielding against radiation, and heat transport problems. It depends 
upon correctly identifying the underlying probability density function, deducing the 
corresponding cumulative distribution function and then inverting it to sample the source. 
Several geometries are encountered in practice. We consider the most important ones of 
them to demonstrate the approach to sampling them. 
 The probability density function for a line source of length H along the z 
coordinate axis can be written as: 
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Notice the normalization in the denominator. The geometry used in the sampling is 
shown in Fig. 6. 
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Fig. 5: A sampled lognormal distribution with median=20. 
 
 The cumulative distribution function is: 
 

    0: ( )

z

dz
zcdf C z

H H
ρ= = =

∫
    (17) 

 
Equating the cdf to a pseudo random number uniformly distributed over the unit 

interval allows us to sample the positions along the line source as: 
 
    z Hρ=       (18) 
 
SAMPLING A DISK SOURCE 
 



 Considering a disk centered at the origin with radius R, we can deduce its pdf and 
the cdf, as shown in Fig. 7, or the radius r we get: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Line Source geometry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Disk Source geometry 
 
 
! disk_source.f90 
! Sampling sources uniformly distributed on a disk of radius R 
!   pdf = f(r) = 2*pi*r / pi*R**2 



! cdf = C(r) = r**2/R**2 
!   pdf = f(phi) = 1/(2*pi) 
! cdf = C(phi) = phi/(2*pi) 
! M. Ragheb, Univ. of Illinois 
! program disk_source 
! Variables declaration 
 real :: radius  = 1.0 
 real :: pi = 3.14159 
 integer :: trials = 1000 
 real r, phi, x, y 
! Open output file   
 open(44, file = 'random_out') 
!   Begin sampling points 
 do i= 1, trials 
! Sample radius on disk 
  call random(rr) 
  r= radius * sqrt (rr) 
! Alternate source sampling 
!  r=radius * rr 
! Sample azimuthal angle 
  call random(rr) 
  phi = 2.0*pi*rr 
! Calculate x and y coordinates 
  x = r * cos (phi) 
  y = r * sin (phi) 
!   Write sampled points to output file 
  write (44,100) x, y 
  write(*,*) x, y 
100  format (2e14.8) 
 end do  
 end 
 

Fig. 8: Disk source sampling procedure. 
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Fig. 9: Uniformly distributed source on a unit radius disk. N=1,000. 
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Fig. 10: Incorrectly sampled distributed source on a unit radius disk. N=1,000. 
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Which can be inverted to sample the radius r as: 
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For the angle θ we can write the pdf and cdf: 
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Inverting the cdf we get the sampled angle as; 
 
    22θ πρ=       (24) 
 
Notice that we needed here to generate two pseudo random numbers for the radius and 
angular variables. The x and y coordinates for a point on the disk can thus be deduced as: 
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 We could have opted to sample the angle θ over the interval [-π,+π]. In this case 
we choose: 
 
    2' (2 1θ π ρ= −      (27) 
 
since the cdf is this case: 
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 Figure 8 shows a procedure for sampling a disk source. The uniform source 
sampled with 1,000 points is shown in Fig. 9. If one had chosen the source as 
proportional to the pseudo random number rather than its square root, a nonuniform 
source would have ensued as shown in Fig. 10. 
 
SAMPLING A RING SOURCE 
 
 This can be considered as a special case of the disk source with pdf and cdf for 
the radial parameter r as: 
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where R1 and R2 are the inner and outer radii of the ring respectively, as shown in Fig. 
11. 
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By inversion we can sample the radius r on the ring as: 
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The sampling of the angular variable would be the same as in the case of the disk source. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11: Ring Source geometry. 
 

! ring_source.f90 
! Sampling sources uniformly distributed on a disk of radius R 
!   pdf = f(r) = 2*pi*r / pi*(R2**2-R1**2) 
! cdf = C(r) = (r**2-R1**2)/(R2**2-R1**2) 
!   pdf = f(phi) = 1/(2*pi) 
! cdf = C(phi) = phi/(2*pi) 
! M. Ragheb, Univ. of Illinois. 
 program ring_source 
! Variables declaration 
 real :: radius2  = 1.0 
 real :: radius1  = 0.5 
 real :: pi = 3.14159 
 integer :: trials = 500 
 real r, phi, x, y 
! Open output file   
 open(44, file = 'random_out') 
 r1=radius1*radius1 



 r2=radius2*radius2 
 dr=r2-r1 
!   Begin sampling points 
 do i= 1, trials 
! Sample radius on disk 
  call random(rr) 
  r= sqrt (r1+dr*rr) 
! Sample azimuthal angle 
  call random(rr) 
  phi = 2.0*pi*rr 
! Calculate x and y coordinates 
  x = r * cos (phi) 
  y = r * sin (phi)  
!   Write sampled points to output file 
  write (44,100) x, y 
  write(*,*) x, y 
100  format (2e14.8) 
 end do 
 end 
 

Fig. 12: Procedure for sampling a uniform ring source. 
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Fig. 13: Sampled points of a uniform ring source. 
 
SAMPLING A CYLINDRICAL SOURCE 
 



 The procedure to sample points uniformly distributed over the volume of a 
cylindrical source such a fuel element in a nuclear reactor, a spent fuel casket, or the 
reactor core itself, is a combination of the sampling of the line source and the disk source. 
In this case the cylindrical probability density function is: 
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yields sampled points uniformly distributed over the cylinder volume using three pseudo-
random numbers as: 
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! cylinder_source.f90 
! Sampling sources uniformly distributed in a cylinder of radius R 
! and height H 
!   pdf = f(r) = 2*pi*r / pi*R**2  cdf = C(r) = r**2/R**2 
!   pdf = f(phi) = 1/(2*pi)        cdf = C(phi) = phi/(2*pi) 
! pdf = f(z) = 1/H               cdf = C(z) = z/H 
! M. Ragheb, Univ. of Illinois. 
! program cylinder_source 
! Variables declaration 
 real :: radius  = 1.0 
 real :: height  = 1.0 
 real :: pi = 3.14159 
 integer :: trials = 1000 
 real r, phi, x, y, z 
! Open output file   
 open(44, file = 'random_out') 
!   Begin sampling points 
 do i= 1, trials 
! Sample radius on disk 
  call random(rr) 
  r= radius * sqrt (rr) 
! Alternate radius sampling 
!  r= radius * rr 
! Sample azimuthal angle 
  call random(rr) 
  phi = 2.0*pi*rr 



! Sample height 
  call random(rr) 
  z= height * rr 
! Calculate x and y coordinates 
  x = r * cos (phi) 
  y = r * sin (phi) 
!   Write sampled points to output file 
  write (44,100) x, y, z 
  write(*,*) x, y, z 
100  format (3e14.8) 
 end do 
 end 

Fig. 14: Procedure for sampling cylindrical source. 
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Fig. 15: Sampled points for uniform cylindrical source. N=1,000. 
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Fig. 16: Sampled points for nonuniform cylindrical source. N=1,000. 



 
 Figure 14 shows a procedure for sampling a cylindrical source. The uniform 
source sampled with 1,000 points is shown in Fig. 15. If one had chosen the source as 
proportional to the pseudo random number rather than its square root, a nonuniform 
source would have ensued as shown in Fig. 16. 
 
SAMPLING A SPHERICAL SOURCE 
 
 For a sphere of radius R we can write for the pdf  and cdf in the radial direction: 
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Inverting the cdf yields for the sampled radius r: 
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Notice the different exponent in the case of the spherical case (1/3) compared with the 
case of the cylindrical geometry (1/2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 17: Spherical source geometry. 

 



 For the polar angle θ and the azimuthal angle φ, we adopt the approach of 
sampling an isotropic spherically symmetrical source. In this case each element of solid 
angle receives the same contribution from the source. Hence we need to sample the pdf; 
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For the polar angle: 
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For the azimuthal angle: 
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Thus the sampled coordinate points in a uniform spherical source would be: 
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Since: 
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SAMPLING A HEMISPHERICAL SOURCE 
 
 This is a special case of the spherical source where the polar angle is as shown in 
Fig. 18: 
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Fig. 18: Hemispherical source geometry 
 



The cdf is: 
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since 2(1 )ρ−  is distributed in the same manner as 2ρ . 
 The sampling for the azimuthal angle proceeds in the same way as for the 
spherical source. 
 
SAMPLING A SPHERICAL SHELL 
 
 The pdf and cdf for the radial position are in this case: 
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The sampling of the polar and azimuthal angles is similar to the case of the hemisphere, 
yielding the samples points: 
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SAMPLING A HEMISPHERICAL SHELL 
 
 This is a special case of the spherical shell as shown in Fig.19 where: 
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And the sampled points become: 
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Fig. 19: Sampling hemispherical shell geometry. 
 
SAMPLING NON-UNIFORM SOURCES 
 
 In most situations one encounters cases where the source distribution is not 
uniform. For instance the permeability in a porous medium, the conductivity in a 
conductor or the space charge in a plasma may depend on the coordinates, and would be 
non-uniform. In flow problems, in particular, one encounters the need to set a random 
radius in a uniform axi-symmetric flow. As an example we consider a spherical source 
case with a variate such as the probability of a radius r is proportional to r. A volumetric 
density of source particles describing this situation is given by: 
 



    ( ) .d r k r=       (42) 
 
where k is a constant. 
 The pdf in this case is modified from Eqn. 35 as: 
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and the cdf is: 
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Thus the sampled radius is given by: 
 
    

1
4r Rρ=       (45) 

 
The polar and azimuthal angles can be sampled in a way similar to the case for a uniform 
spherical source. 
 
SAMPLING DISTRIBUTIONS WHICH ARE NOT PROBABILITY 
DENSITY FUNCTIONS 
 
 Consider a random variable that is defined over the interval: 
 
    [3,5]ξ ∈  
 
that is distributed proportional to x3 in this region. The function x3 can be converted to a 
probability density function with proper normalization. In this case the pdf is: 
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The cumulative distribution function is constructed and equated to pseudo random 
number ρ : 
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Inverting the cdf, we get the sampling function: 
 
    

14 4 4 4[3 (5 3 ) ]x ρ= + − .    (46) 
 
SURFACE SOURCE EMITTING A COSINE DISTRIBUTION 
 
 This situation occurs in dosimetry and shielding studies as well as in fluid 
dynamics when a particle reservoir is used as a boundary condition.  For a total surface 
source strength S0 [particles/(cm2.sec)], the source differential angular distribution is 
given by: 
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since: 
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The un-normalized pdf for sampling such a source is given by: 
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The pdf for the polar angle needs to be normalized as discussed in the last section: 
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The cdf becomes: 
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Inverting the cdf: 
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SAMPLING SPATIAL DISTRIBUTIONS 
 
 We consider the case of sampling the flux or power distribution in a rectangular 
parallelepiped reactor core with side lengths a, b, and c in the x, y, and z directions 
respectively, as shown in Fig. 20.  Sampling the neutron flux may be needed for shielding 
calculations. 
 The neutron source is proportional to the flux distribution: 
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If one would sample a uniform source distribution the corresponding pdf would be: 
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Fig. 20: Flux distribution in a rectangular parallelepiped reactor. 
 
This is separable in the x, y, and z directions as follows: 
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The corresponding cdfs and sampled points become: 
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 This result can be generalized if the flux distribution of Eqn. 49 is considered. In 
this case the pdf can be written as: 
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Since: 
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we can write: 
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The corresponding cdfs are: 
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The sampled points representing the neutron source distribution will be: 
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EXERCISES 
 
1. Write a procedure to sample the Maxwell-Boltzman distribution for velocities and 
the distribution for energies at room temperature. Make sure that the form you use is 
normalized. Graphically estimate the most probable energy and velocity, as well as the 
average velocity and energy. 
2. Write a procedure to simulate the process of radioactive decay of a radioactive 
isotope with decay constant λ, whose probability density function is: 
 

2
1

2
1

6931.02ln
)(:

TT

etppdf t

==

= −

λ

λ λ

 

 
 where: T1/2 is the half life of the isotope.  
Simulate the decay of tritium whose half-life is 12.34 [years], and display the frequency 
distribution that the procedure generates. 
3. In the sampling procedure for the Normal distribution based upon the Central 
Limit Theorem, the number of uniformly distributed random variables is taken as 12. 
Investigate the effect on the generated distribution if a smaller number, say 5 is used, or a 
larger number, say 20 is used. 
4. Modify the procedure to sample a uniform cylindrical source to sample a 
cylindrical shell of height h, and radii R1 and R2. 
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