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4.1. INTRODUCTION 
 

 The use and generation of random numbers uniformly distributed over the unit 

interval: [0, 1] is a unique feature of the Monte Carlo method.  These are used as building 

blocks for constructing and sampling probability density functions that represent any of 

the processes or phenomena that are under investigation.  Meaningful sequences of 

random numbers must be generated for valid results to be generated.  Otherwise the 

infamous gigo (garbage in, garbage out) adage of numerical computations would apply.  

A user of Monte Carlo is well advised to the check the validity, including length and 

period and randomness of his sequence of random numbers before embarking on a major 

simulation. 

 Random numbers can be obtained or generated in many different ways.  The last 

digits in phone numbers; but not the first numbers, in a phone directory can be used as 

random numbers.  Tables of random numbers that were statistically tested for 

randomness have been published, just like trigonometric functions tables.  The white 

noise from electronic equipment and the decay of radioactive isotopes, being random 

phenomena have been used to generate random numbers.  Spinning a roulette wheel with 

its perimeter divided into ten sections can generate a random sequence of digits from 0 to 

9.  This particular way of generating random digits sequences suggested the name of 

Monte Carlo, alluding to the famous gambling casino at Monte Carlo in the municipality 

of Monaco, by Nice in Southern France. 

 

4.2 THE MID-SQUARE METHOD 
 

 Computer usage depends on the mathematical generation of sequences of random 

numbers that are long enough, or having a long period, so that they do not repeat 

themselves in a given simulation.  If the sequence starts repeating itself, the sampled 

points would be repetitions of previous points.  The repeated samples are useless and 

would not yield any new information. 

 In the mid-square method, due to John von Neumann, an initial number n0 is 

raised to its second power.  Let us consider a number of four significant digits.  Then the 

four middle digits of the ensuing number are kept to constitute the next number in the 

sequence, the two digits to the left and the two digits to the right are discarded, and the 

process repeated.  

 We show an example of such a generated sequence as follows: 

 

     n0 = 0.9876 

 

     n0
2 =0.97535376 



 

 

 

     n1 =0.5353 

 

     n1
2 = 0.28654609 

 

     n2 = 0.6546 

 

     n2
2 = 0.42850116 

 

     n3 = 0.8501 

 

     n3
2 = 0.72267001 

 

     n4 = 0.2670 

 

     …………...……. 

 

 This method is marginally satisfactory, and the multiplicative congruential 

method has universally replaced it. 

 

4.3 THE MULTIPLICATIVE CONGRUENTIAL METHOD 

 

 This method is the best studied and most widely used method for random 

sequences generation.  It generates pseudo-random sequences of random numbers 

uniformly distributed over the unit interval.  It depends on the use of the recursive 

relation: 

 

     1{ }modulo( )i ix ax c m     (1) 

 

The notation “modulo” or sometimes “mod” signifies that xi is the remainder 

when {axi-1 + c} is divided into m.  Here m is a large integer determined by the design of 

the computer, usually a large power of 2 or 10, and a, c, and xi are integers between 0 and 

(m-1). 

The initial value x0 is designated as the “seed” of the sequence. 

 In many applications of the method the constant c is taken as zero, yielding a 

simpler form of Eqn. 1: 

 

     1{ }modulo( )i ix ax m    (2) 

 

 The value of m is normally taken as the largest number that can be generated on a 

computer, which depends on the number of bits used in its processor and its data busses. 

In this case for a design of n bits: 

 

     m = 2n – 1     (3) 

 



 

 

For instance, for a hypothetical n = 4 bits machine, the largest number that can be 

generated would be according to Eqn. 3: 

 

     m = 24 –1 = 16 –1 =15. 

 

This number expressed in the binary notation is: 

 

     m = 1111 

 

= 1x20 + 1x21 + 1x22 +1x23 

 

= 1x1 + 1x2 + 1x4 + 1x8 

 

= 1 + 2 + 4 + 8 

 

= 15 

 

 The numbers: 

 

     )1,...(3,2,1,  mi
m

xi

i ,   (4) 

 

and not just xi, are taken as the pseudorandom sequence over the unit interval. 

 The advantages of using pseudorandom sequences are that a calculation can 

always be repeated, starting from the same seed number, for comparison and testing 

purposes of programs, a few simple operations are needed, and the program uses a few 

memory positions. 

 The only disadvantage is that the sequence must satisfy certain conditions for not 

repeating itself after a long length or period. 

 As an example of a random sequence using Eqn. 3: 

 

 Let: Seed  x0 = 2 

 

   m = 24 =16 

 

   c = 1 

 

   a = 3 

 

 Then:  x0 = 2           1250.0
16

2
0   

 

   x1 = {3x 2 +1} mod 16 =  7 mod 16 =  7 4375.0
16

7
1   

 



 

 

   x2 = {3x 7 +1} mod 16 = 22 mod 16 =  6 3750.0
16

6
2   

 

   x3 = {3x 6 +1} mod 16 = 19 mod 16 =  3 1875.0
16

3
3   

 

   x4 = {3x 3+1} mod 16 = 10 mod 16 = 10 6250.0
16

10
4   

 

   x5 = {3x10+1} mod 16 = 31 mod 16 = 15 9375.0
16

15
5   

 

   x6 = {3x15+1} mod 16 = 46 mod 16 = 14 8750.0
16

14
6   

 

   x7 = {3x14+1} mod 16 = 43 mod 16 = 11 6875.0
16

11
7   

 

   x8 = {3x11+1} mod 16 = 34 mod 16 =  2 1250.0
16

2
8   

 

   x9 = {3x 2 +1} mod 16 =  7 mod 16 =  7 4375.0
16

7
9   

 

   ………………………………………………………………… 

 

 We notice that the sequence obtained for the xi’s is: 

 

   2, 7, 6, 3, 10, 15, 14, 11, 2, 7, ….. 

 

so that the sequence started repeating itself with a “period” length of 8. 

 If we would have chosen: 

 

 m = 24 – 1 = 15, 

 

the generated sequence would become: 

 

   x1 = {3x2 +1} mod 15 =  7 mod 15 = 7 466666.0
15

7
1   

 

   x2 = {3x7 +1} mod 15 = 22 mod 15 = 7 466666.0
15

7
2   

 

   ………………………………………………………………….. 



 

 

 

In this case, the generated sequence is a single number that would repeat itself 

indefinitely, the period of the sequence is 1, and the sequence is useless for any 

meaningful computations. 

 

4.4 COMPUTER IMPLEMENTATION AND TESTING 
 

 Usually the sequence repeats itself after at most m steps.  It must be ensured for a 

given simulation that the period is longer than the needed number of random numbers.  

The value of m is usually chosen large enough to permit this. 

 If a compiler does not provide a satisfactory random number generator, writing 

one’s own generator is advisable.  Figure 1 shows a random number generator 

subroutine, rand, which can be embedded and called from any other application.  It could 

be reprogrammed as a function instead of a subroutine. 

 
! pseudo_random.f90 

! Visualizing the randomness of our own pseudo random 

! number generator by generating uniformly distributed 

! points on the unit square, for plotting with a plotting 

! routine, e.g. Excel. 

! The multiplicative congruential method:  

! x(i)={a*x(i-1)+c}(modulo m) 

! is used where: 

! The (modulo m) notation signifies that x(i) is the remainder  

! when {a*x(i-1)} is divided by m. 

! m is a large integer determined by the design of the computer,  

! usually a large power of 2. 

! a, c, and x(i) are integers between 0 and m-1 

! The numbers [x(i)/m] are used as the pseudo-random sequence. 

! M. Ragheb, Univ. of Illinois at Urbana-Champaign. 

! 

 program pseudo_random 

 real x, y, rr 

 integer :: trials = 1000 

! Initialize output file of uniformly distributed random 

! numbers on the unit square 

 open(44, file = 'random_out1') 

 do i= 1, trials 

  call rand(rr) 

  x=rr 

  call rand(rr) 

  y=rr 

  write (44,100) x, y 

 end do 

100 format (2f10.3) 

 end  

 

 subroutine rand(rr) 

 real rr, xx1, xm 

 integer x1 

 integer :: x0 = 2 

 integer :: c  = 1 

! integer :: a  = 3 



 

 

 integer :: a  = 3*17 

 integer :: m  = 2**20 

 xm = m 

 x1 = (a*x0 + c)  

 x1 = mod (x1, m) 

! write(*,*) x1 

 xx1 = x1 

 rr = xx1 / xm 

! write(*,*) rr 

 x0 = x1 

 return  

 end  

 

Figure 1. Procedure for generating and visual testing a pseudorandom sequence on the 

unit square. 

 

Fig. 2: Pseudorandom sequence plotted on the unit 

square, N=1,000.
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 There are formal statistical tests that are available for testing the randomness of 

the generated sequence.  These must be used whenever possible.  A fast test would be to 

consider each pair of consecutive points in the sequence as points in the unit square.  A 

scatter display of these points would visually show a random pattern.  A bad sequence 

would visually display a banding pattern whenever the period of the sequence is short and 

the sequence starts repeating itself.  Figure 2 shows 1,000 points that display a 

satisfactory choice of the parameters: 

 

    x0 = 2, c=1, a = 51, m = 220. 

 

 On the other hand, just changing the value of a in the routine into: 

 



 

 

    a = 3, 

 

leads to a short sequence, which can be detected visually as banding as shown in Fig. 3. 

 

Fig. 3: Banding on the unit square for a 

repeating pseudorandom sequence, N=1,000.
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4.5 PACKAGED PSEUDORANDOM SEQUENCES GENERATORS 
 

 Most compilers and program libraries contain well-tested pseudorandom 

sequences generators.  The International Mathematical and Statistical program library, 

IMSL, contains a variety of these programs.  It is still advisable to test these generators 

whenever they are used, to make sure that they are being implemented correctly. 

 The procedure in Fig. 4 calls the compiler’s pseudorandom number generator, 

random, and places each two consecutive number as a vector of points in the plane.  The 

file on which they are written can then be loaded into a plotting routine and displayed in 

the scatter mode. 

 
! plot_random_numb.f90 

! Visualising the randomness of the compiler's random 

! number generator by generating uniformly distributed 

! points on the unit square, for visualization in a  

! plotting routine, e.g. Excel. 

! M. Ragheb, Univ. of Illinois at Urbana-Champaign 

! 

 program plot_random_numb 

 real x, y 

 integer :: trials = 1000 

! Initialize output file of uniformly distributed random 

! numbers on the unit square 
 open(44, file = 'random_out1') 



 

 

 

 do i= 1, trials 

  call random(rr) 

  x=rr 

  call random(rr) 

  y=rr 

 write (44,100) x, y 

 end do 

   

100 format (2f10.3) 

 end 

 

Fig. 4: Procedure to visualize a compiler’s random number generator. 

 

4.6 QUASI RANDOM SEQUENCES 

 

 Rather than using a pseudorandom sequence, a good sampling of the unit interval 

may be possible by using quasi random sequences as suggested by Zaremba and Halton.  

In this case an example of a sequence of the unit interval being halved, and then each 

subdivision is halved again can generate the following quasi random sequence: 

 

    0.5 0.25 0.125 ….. 

     0.75 0.325 ….. 

      0.625 ….. 

      0.825 ….. 

 

 Sampling the unit interval uniformly is not a goal by itself. Beyond allowing us to 

uniformly sample the unit interval, pseudorandom or quasi random sequences allow us to 

go the extra step of sampling any discrete or continuous probability density function and 

thus allow us to simulate any needed effect or process that can be represented by a 

probability density function. 

 

4.7 DISCUSSION 

 

 The incentive to design and build computer platform with a larger number of bits 

in its word length is not mandated just by the need to obtain higher accuracies by 

retaining a large number of significant digits, the need to generate long encryption cipher 

keys, or by the need to generate large magnitudes in the address registers so as to 

manipulate long vectors and large matrices.  It is also mandated by the need to generate 

unrepeated long sequences of random numbers in Monte Carlo simulations.  This affects 

the costs of the computing machinery. A 32 bits or 64 bits desktop computer or 

workstation costs in the range of the thousands of dollars, whereas a supercomputer with 

128 bits of word length costs in the range of the million of dollars.  Desktops and 

workstations are satisfactory for most practical simulations.  If more ambitious 

computations are contemplated with a need of a large number of simulations, one should 

consider the migration of the work from a desktop machine or a workstation to a 

computing platform with a larger word length.  A word of caution must be stated here 

about processors that could process data with a reported word length of say 64 bits, but 



 

 

then send the data on 32 bits data buses.  In this case half the bits are lost, and the 

computer becomes effectively a 32 bits machine.  The need to check the capabilities of 

the computing platform used, the adequacy of the random number generator adopted, and 

the randomness and periods of the generated random sequences in a given computation 

cannot be overemphasized. 

 

EXERCISES 
 

1. Instead of visualizing the pseudorandom sequence on the unit square, modify the 

procedure given above and use each three consecutive numbers in the sequence to 

generate a point (xi, xi+1, xi+2) in the unit cube.  Display both a good and a bad 

sequence of pseudorandom numbers. 

2. Use the simpler form of the congruential multiplicative where c = 0, and 

investigate the conditions under which good and bad random sequences are 

generated. 


