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19.1 INTRODUCTION 
 

 A mathematical formulation of particle transport using the Monte Carlo method is 

exposed.  It is recognized that the Monte Carlo method being primarily a numerical 

integration methods is best applied within the context of an integral formulation of the 

transport equation rather than an integro-differential form.  The term particle is general and 

refers to neutral or charged particles, gas or fluid molecules or photons.  Even though 

Monte Carlo can treat non-linear systems, we consider here the linear form of the 

Boltzmann’s transport equation for ease of exposition.  Introducing nonlinearity can be 

done in the course of the simulation process. 

 

19.2 THE BOLTZMANN EQUATION FOR PARTICLE TRANSPORT 
 

 The Boltzmann equation is used to describe the motion of the following particles or 

pseudo particles: neutrons, photons, fluid or gas molecules, ions and electrons, phonons, 

and even motor cars in a traffic situation.  The underlying assumptions for its use in 

neutron and gamma rays transport will be discussed here.   

The equation was first published in 1872 by Boltzmann as a particle balance for the 

distribution function: 
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where: 

 

    (v, , ) vn r t d dr  

 

is the average number of particles in the volume element dr about r with velocities in the 

range (v, v v)d , at time t: 
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where: 
F

a
m

  is the acceleration vector due to the force F , 

 



 

 

 The left hand side represents losses from a unit volume of phase space due to the 

applied forces and gradients in density.  The right hand side is a term whose presence 

attempts to restore the thermal equilibrium destroyed by the loss terms in the left hand side. 

 C(n, n) is a collision term which is nonlinear in n and assumes that the molecular 

chaos hypothesis or Stosszahlansatz is valid.  This means that there exists no correlation 

between the velocities and positions at collisions.  This consequently reduces the equation 

to the consideration of “mean values” only.   

In general, several particles are interacting and there will be a particle distribution 

function for each species, which leads to a set of coupled equations: 
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where: ( , )ij i jC n n  is the collision term between particles i and j, 

 ( , )ij i jS n n  accouts for sources and sinks of particles. 

 

 This equation is general, but is normally simplified for the different situations at 

hand.  As a special case for nuclear applications we can make the following assumptions: 

 

a. We regard the neutrons and the nuclei of the medium with which they interact as a 

mixture of two gases. 

b. The force terms which could be magnetic, electrical, gravitational or inertial are 

considered negligible for the problems under consideration.  

 

These simplifications lead to the equations: 
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where: n refers to the neutron density function, 

 M refers to the medium density function. 

 

If we further consider that: 

 

c. The neutron particle density n is about 1010 [particles/cm3] which is much smaller 

than the medium atomic density M= 1022 [nuclei/cm3], so that we can neglect n with 

respect to M. 

Thus: 
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19.3 INTEGRO-DIFFERENTIAL FORM OF THE BOLTZMANN 

EQUATION 
 

Still further simplification can be achieved if we consider that: 

 

c. The atoms of the medium are in thermal equilibrium, or that their distribution 

function M is known, 

 

then we can accept the neutron density equation as a linear equation in n. 

 

 The collision term ( , )nMC n M  which represents the scattering in and out of the 

velocity range (v, v v)d  can be written as: 

 

  ( , ) (v ' v) (v ', , ) v ' v (v) (v, , )nM s
C n M K n r t d n r t      (5) 

 

where:  (v ' v)K   is the neutron-nucleus scattering kernel, 

  (v)
s  is the total scattering cross section defined as: 
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s
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 The source term ( , )nMS n M  can be written as: 

 

( , )nM f aS n M Q S S         (7) 

 

where:  Q is an external source term, 

  Sa is a negative source term representing absorptions: 

 

   v (v) (v, , )a a
S n r t   , 

 

  Sf is a fission source term: 
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  (v)
f  is the fission cross section, 



 

 

i  is the decay constant for the delayed neutrons whose precursor 

concentration is ( , )i r t , 

  is the mean number of neutrons per fission, 

(v)p  is the fission spectrum of prompt neutrons, 

(v)i  is the fission spectrum of the i-th delayed neutron group, with: 
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where: i  is the fraction in the i-th delayed group from fission. 

 

 
 

Figure 1. Coordinate System for particle transport. 



 

 

 

 It is noticed that the moderator atom distribution M is included in the definition of 

the macroscopic cross sections (v)
a  and (v)

f : 
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This leads to Doppler broadening in the case of a resonance-type cross section. 

 With some further manipulations, the time independent integro-differential form of 

the transport equation for the neutron density can be written; as a function of particle 

energy, rather than velocity: 
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where:  ( , ) v ( , v, )r E n r t   is the particle angular flux, 

( , ) ( , ) ( , )
T s a

r E r E r E     is the total macroscopic cross section, 

including fission, 

,s a  are the scattering and absorption macroscopic cross sections, 

respectively, 

E  is the shorthand for ˆ( , )E   

dE  denotes ˆdEd , 

̂  is a unit vector in the direction in the direction of particle motion, 

( , ) fS r E Q S   is an external Q and fission Sf source density. 

 

 The geometry of the system is shown in Fig. 1. 

 

19.4 INTEGRAL FORM OFTHE BOLTZMANN EQUATION FOR 

PARTICLE TRANSPORT 
 

 The integro-differential form of the Boltzmann equation can be converted to an 

integral form that is more suitable for Monte Carlo simulations as: 
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This integral form recognizes the Monte Carlo method as a numerical integration 

method, and is the most suitable for such an analysis. 



 

 

 

19.5 COLLISION RATE DENSITY FORMS OF THE BOLTMANN 

EQUATION 
 

 We define the optical distance, or distance in number of mean free paths as: 
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and two types of collision densities: 

 

a. The density of particles entering a collision per unit time at r  with incoming 

velocity E ; thus it is referred to as the “collision rate density” : 
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b. The density of particles leaving a collision per unit time or a source at r  with 

outgoing velocity E : 
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 From Eqn. 12 for ( , )r E  we get the integral forms for the ingoing and the 

outgoing collision rate densities as: 
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19.6 KERNEL FORMS OF THE INTEGRAL TRANSPORT EQUATIONS 
 

 By transforming the transport equation into a three dimensional form, setting: 
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and introducing the transport kernel: 
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and the collision kernel: 
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where:  
'
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T
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 , is the integral of T  along the line from 'r  to .r  

 

 The ingoing collision rate density can be written in the following simple form: 

 

   ( )cS TC         (20) 

 

where: 
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is the first collision source, or a source whose particles have been transported once but 

not yet collided. 

 The outgoing collision rate density can be written in the simple form: 

 

   ( )S CT         (22) 

 

 The flux equation is expressed in a more complicated manner: 
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 It can be observed that Monte Carlo simulations fundamentally estimate collision 

rate densities either outgoing or ingoing, and that the flux is an estimated derived quantity 

where the ingoing collision density is divided into the total cross section. 

 

19.7 NEUMANN SERIES SOLUTION FOR THE INGOING 

COLLISION RATE DENSITY 
 

 Using matrix notation for Eqn. 20, and considering the transport operator T and 

collision operator C as matrix operators and rearranging, we get: 
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where I is a unit matrix operator. 

 Premultiplying by the inverse in Eqn. 24 we get: 
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Using the expansion: 
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Eqn. 25 yields the Neumann series expansion for the ingoing collision density: 
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where the spectral radius of (TC) is less than unity. 

 

19.8 NEUMANN SERIES SOLUTION FOR THE OUTGOING 

COLLISION RATE DENSITY 
 

 Using matrix notation for Eqn. 22, and considering the transport operator T and 

collision operator C as matrix operators and rearranging, we get: 
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where I is a unit matrix operator. 

 Premultiplying by the inverse in Eqn. 28 we get: 
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Using the expansion of Eqn. 26, Eqn. 25 yields the Neumann series expansion for the 

outgoing collision rate density: 
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Notice the actual physical source S appears in the solution for the outgoing collision 

density, whereas the first transported source Sc = (TS) appears in the solution for the 

ingoing collision density. Also notice the order of the transport operator as (CT) in the 

outgoing collision density solution, and (TC) in the ingoing collision density solution. 

 

19.9 PROCEDURE FOR MONTE CARLO SIMULATION OF THE 

BOLTZMANN EQUATION: COLLISION RATE DENSITY 

ESTIMATION 
 

 The following flow chart shown in Fig. 2 outlines the procedure for the Monte 

Carlo simulation of the Boltzmann equation.  This procedure actually corresponds to the 

calculation of estimates for the Neumann series terms for the integral form of the transport 

equation. 

 



 

 

 
 

Figure 2. Procedure for estimation of ingoing and outgoing collision densities.  Source: 

Oak Ridge National Laboratory (ORNL). 

 

 Step 1 yields:  0 S  , 

 

which corresponds to sampling the actual physical source. 

 

 Step 2 yields:  0 0T TS   , 

 

which corresponds to transporting the physical source one step, or generating the first 

transported source. 

 There is no statistical weight factor adjustment during the transport process, which 

moves the particle from one point to another according to the sampling of the transport 



 

 

kernel T.  This is so because both the source and the transport kernel are normalized to 

unity.  In fact, for a finite size system, the transport kernel is normalized to less than unity, 

but this is accounted for by the termination of those particle histories which escape from 

the system.  An alternative approach worth investigating is to prohibit escape from the 

system and use a weight factor.   

A method of terminating the particle histories such as Russian Roulette would then 

need to be used to terminate the particle histories. 

 

 Step 3 and 4 yield: 1 0C   

 

We return iteratively to step 2 to calculate: 

 

 Step 2 yields:  n nT  , 

 

 Step 3 and 4 yield: 1n nC   . 

 

Final estimates of the solution can be obtained as follows: 

 

a. By summing all particle statistical weights at the beginning of step 2, we obtain: 
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where N is the number of collisions undergone by the particle in the medium, or the 

number of Neumann series terms generated in a given history. 

 

b. By summing all particle statistical weights at the beginning of step 3, we get: 
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c. An estimate of the flux can be obtained by dividing the ingoing collision density by 

the total macroscopic cross section as: 
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19.10 THE VALUE OR IMPORTANCE EQUATION FOR COLLISION 

RATE DENSITIES AND RECIPROCITY RELATIONS 
 

 We define † ( , )r E  to be the value of an event or collision at point r  for a particle 

entering the collision with energy E .  We can write the following equation, which is 

adjoint to the collision density Eqn. 20: 
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where:  
†S  is the immediate payoff at entering a collision. 

 

 If F is some linear functional: 

 

   †,F S         (35) 

 

where: <  ,  > denotes an inner product, we also have: 

 

   †, cF S  .      (36) 

 

 We similarly can define the value or importance at leaving a collision, which yields 

an equation adjoint to that for  : 
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 We thus have two additional equations for the functional F, which are equivalent to 

those already obtained; yielding the following reciprocity relations:  
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This is the quantity that is normally estimated in Monte Carlo simulations describing 

detector responses or reaction rates. 

 

19.11 DISCUSSION 
 

 We use position, energy, direction and time to specify the random walk that 

describes successive observations of particles or radiation interacting with matter.  The 

linear Boltzmann equation in its integral form represents this process and is in fact a 

Fredholm equation of the second type. 

 Any average quantity of interest that derives from particle transport can be obtained 

by an inner product or average: 
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where the detector 
†S response is related to both the medium and the nature of the quantity 

to be determined.   



 

 

 A great deal of effort is spent in the formulation of the detector response 
†S  that 

allows results of practical scientific and engineering interest to be computed efficiently.  


