INTRODUCTION

Any natural or artificial physical configuration which produces an asymmetric force in a wind stream can be made to rotate, translate or oscillate a surface, and power can be extracted from the wind. This simple notion has been used by many bright and inventive minds leading to the invention of a large number of wind machine concepts. Some of these ingenious ideas, maybe with modifications, await the availability of appropriate materials, control systems or special needs or circumstances to be placed into future use.

Since a larger amount of potential energy exists in the wind than kinetic energy, devices that depend on pressure differentials may offer innovative approaches to future wind energy conversion.

We consider some of these concepts since they provide a promise for innovative future applications of wind machines.

HORIZONTAL AXIS WIND TURBINES, HAWTs

In this type of design the axis of rotation is parallel to the wind direction. This includes the Dutch mills, American Water Pumps and most of the modern wind generators (Fig. 1).
Horizontal axis machines can catch the wind in an upwind fashion, and need in this case a rudder or electronic systems to direct them towards the prevailing wind direction. If they catch the wind in a downwind fashion, they become self orienting and do not need a rudder. However, the blades suffer vibrations from rotating within the shadow wake created by the support tower (Fig. 2).

Figure 2. Upwind and downwind designs of horizontal axis wind generators.

The rotor blades designs can be solid made out of wood, fiberglass, metal, or
constructed out of fabric in the form of a sail (Fig. 3).

Figure 3. Sail wing rotor design.

The rotors can be single bladed with a counter weight, double bladed, or multiple bladed (Fig. 4). The three blades design is considered to offer an aesthetic appeal and is widely used.

Figure 4. Single, double and three bladed rotor designs.
Humpback whales are agile swimmers considering each one weighs about 80,000 pounds. Part of it may originate from a row of warty ridges, called tubercles, on the front edge of their fins. A biology professor at West Chester University in Pennsylvania, Frank Fish, used biomimicry to design rows of bumps to wind turbine rotors which reduce drag and noise, increase speed to changing wind direction and boost the power harnessed by 20 percent. The bumps go on the front edge of the fins and are used commercially in industrial fans made by Envira-North Systems and on surfboards by Fluid Earth.
VERTICAL AXIS WIND TURBINES, VAWTs

Vertical axis wind machines offer the advantage of being capable of catching the wind from all directions without a need to orient the blades in the wind direction. Some designs are though not self-starting.

Another advantage is that the blade takes the shape of a jumping rope or Troposkein in Greek. It operates in almost pure tension, it becomes relatively light and inexpensive to construct.

Another noted advantage is the elimination of the need for the nacelle harboring the gears and generator in horizontal axis machines to be placed at great heights above the ground. The generator and other control and power equipment can be positioned on
the ground where they are easily accessible for maintenance and inspection.

G. J. M. Darrieus introduced the Darrieus design to the USA in 1931. The National Research Council of Canada tested them in the early 1970s. Sandia national Laboratory built a 5 meters in diameter machine in 1974 and was involved in their testing.

Two versions of vertical axis machines have been proposed designated as the φ and ∆ Darrieus designs. The first concept uses curved rotor blades, and the second can use straight rotor blades.

Figure 8. Two versions of the Darrieus vertical axis wind turbines.

Figure 9. Darrieus vertical axis wind turbines.
Since the Darrieus design is not self starting, a hybrid design combining one or more Savonius blades on the central axis can make itself starting. Alternatively, an induction starting motor connected to the local utility grid can be positioned at the bottom of the axis. The same induction motor can be used as an induction generator to supply power to the grid. Induction machines are simple, rugged and inexpensive, requiring essentially no controls other than a contactor to connect it to the utility grid.
Figure 12. Experimental Darrieus vertical axis turbine with two Savonius starters.

Figure 13. Dornier design with a rated power of 4.6 kW at the Northfrisland Island of Pellworm, Germany.
In a larger Darrieus design, propellers can be attached to the rotating blades to provide a starting mechanism.

Vertical axis machines can be built atop a structural tower to intercept higher speed winds. On a tower, stacks of vertical axis rotors can be interconnected with the double advantage of catching higher wind speeds, as well as catching the winds from all directions.

Large structures such as skyscrapers could be retrofitted on their outside with stacked vertical axis turbines providing them with at least part of their energy consumption at little additional cost. This is particularly interesting in large cities where the tall building create a wind tunnel effect, hence the designation of the city of Chicago along Lake Michigan in the USA as the “Windy City.”
Figure 15. Vertical tower wind turbine concept.

Figure 16. Vertical tower with stacked Darrieus wind rotors.
Figure 17. Windspire vertical axis wind turbines are 30-ft high and 4-ft wide, powering a ski slope.

A 230 kW Darrius turbine was built on Magdalen Island in Québec, Canada in 1977 by Dominion Aluminum Fabrication Limited Company of Ontario. The turbine operated at an average output of 100 kW for a year. A noise was heard in the gearbox and the machine was stopped for inspection. To carry out the inspection, the brakes were removed, considering that this type of machine is not generally self starting. That was a fatal mistake, since the machine did in fact self start, and without its brakes and without a load, went into a runaway mode well over its design speed of 38 rpm. The spoilers did not activate properly and when the machine reached 68 rpm, a guy wire broke and the turbine crashed to the ground.

Alcoa in the USA built a 5.5 m diameter 8 kW machine followed by 12.8 m 30-60 kW, 17 m 60-100 kW and 25 m 300-500 kW machines. The effort was plagued by accidents. A 12.8 m machine at a Pennsylvania facility developed vibrations in its central torque tube and eventually buckled down when it run above its rated speed on March 21, 1980.

A 25 m machine crashed in April 1981 in the San Gorgonio Pass east of Los Angeles. The machine worked properly at 60 rpm well above its rated speed of 41 rpm. A software error in the microprocessor controller prevented brake application in high winds. A bolt broke and allowed a blade to flare outward cutting one of the guy wires causing the machine to collapse to the ground.

The string of accidents slowed the development of vertical axis machines in favor of horizontal axis machines. With a better understanding of their operational modes, vertical axis wind machines can contribute to wind power production in the future.

POTENTIAL ENERGY PRESSURE DIFFERENCE MACHINES, ARTIFICIAL VORTEX CONCEPT
Such a machine extracts energy from pressure differences or the potential energy in the wind, rather than from the kinetic energy of the moving air. The potential energy in the air caused by pressure differentials is vastly larger than the kinetic energy at moderate wind speeds. This suggests the possibility of large energy outputs for a small tower size resulting in economical power production.

A way to concentrate wing energy is through the use of an artificial vortex. A confined vortex or tornado can be generated for mono directional winds using a spirally constructed tall shell structure with a top narrower than its base. For omni-directional winds, shutters can be opened and closed on a cylindrical shell structure to create a rising vortex inside the cylindrical structure. In both cases a wind turbine positioned at the bottom of the structure would extract part on the concentrated wind energy.

The augmented vortex concept was studied by James T. Yen at the Grumman Aerospace Corporation. The tower structure would use vertical vanes to direct the wind into a circular path around the inside of the tower. Wind blowing across the top of the tower would tend to pull the air inside into an upward direction through the Venturi effect. The combined action would result into the air following a spiral path and generating a vortex. A vortex is characterized by a high speed low pressure core much like a confined tornado. The pressure drop between the vortex core and the ambient outside air can be used to drive a high speed wind turbine at the base of the tower.

A modification of the concept can be thought by shaping the bottom part into an airfoil shape in the form of a horizontal nozzle and shaping the inside of the tower into a spiral airfoil eliminating the need for the vertical slits.

The tower could be painted in black absorbing solar energy and leading to air buoyancy. As a symbiotic combination of wind and solar energy extraction, the system would act optimally by generating energy from the wind on cloudy windy days and from the sun on sunny windless days enhancing the capacity factor of the plant.

An attractive feature of such a configuration is that it combines the advantages of vertical axis wind machines with the power production equipment easily accessible near the ground, and of catching the wind from all directions.

It is reported that the concept was not pursued from the fear of spawning tornadoes if the vortex becomes separated from the tower and become an actual tornado. A major difference can be noted though in that natural tornadoes and dust devils can be observed to be downdraft columns from the clouds, whereas the confined vortex would move the air in the opposite direction as an updraft.

The fear appears to be unsubstantiated since dust devils frequently occur without developing into full-fledged tornadoes in areas of the Great Plains, California and in the deserts of the world. Motorists commonly drive through them in the USA, and children playfully pursue and run across them in the Middle East. One can observe two vortices forming at the wing tips of landing airplanes, which do not develop into tornadoes. Their hazard is limited to sky divers who can inadvertently run into them.

The unsubstantiated fear is reminiscent of one that arose in the 1950s to the effect that thermonuclear weapons testing at the megatons level could ignite the Earth’s atmosphere turning it into a star; which obviously did not occur.

It is suspected that the vortex concept was not actively pursued due to the large capital cost involved in building the associated massive structures.

Existing wind machines as well as airplanes routinely generate vortices without
their developing into tornadoes. The fear can be allayed by shutting down the machine under stormy conditions. Using a straight rising air column without the spiral action could also be attempted.

A delta wing is known to generate an unconfined vortex from its leading edge to its top. A wind turbine can be positioned on top of the wing to extract the energy concentrated in the vortex.

Figure 18. Confined Vortex Concept for Mono-directional wind.

Figure 19. Vortex Tower for Omni-directional winds.
One can also advance a suggestion to retrofit the cooling towers of existing fossil and nuclear power plants with vortex generators to supplement their energy production, adding to their energy production capacity.

VENTURI EFFECT MACHINES

The Venturi effect is named after Giovanni Battista Venturi (1746-1822) from Italy and refers to the decrease of gas or fluid pressure when it flows through a constriction in the flow cross section.

According to Bernoulli’s law the sum of the static and kinetic pressures or the potential and kinetic energies in an incompressible inviscid flow is a constant:

$$p + \frac{1}{2} \rho V^2 = \text{Constant}$$ \hspace{1cm} (1)

The pressure drop in a constriction would be given by:

$$p_1 + \frac{1}{2} \rho V_1^2 = p_2 + \frac{1}{2} \rho V_2^2 = \text{Constant}$$

$$\Delta p = p_1 - p_2 = \frac{1}{2} \rho V_1^2 - \frac{1}{2} \rho V_2^2$$ \hspace{1cm} (2)

$$= \frac{1}{2} \rho (V_1^2 - V_2^2)$$

With a Venturi effect nozzle, the wind can be directed into a nozzle to generate a low pressure region at which the blades of a wind turbine can be installed. The venturi, named after the discoverer, G.B. Venturi, an 18th century physicist is a hole in the wall in front of a moving air mass. Venturi’s discovery was that air moving through a venturi would gain speed. In the case of a Venturi device mounted in a manifold where one inlet is the incoming air and one is at static pressure, the exiting air can pull the static air down close to a vacuum in the low pressure area behind the inlet.
In the Enfield Andreau design, the rotors tips are hollow. As they rotate, they generate a low pressure region in a hollowed tower inside which a turbine would rotate.

The simplest form of the concept is to just use a deflector into a turbine. Such designs can be placed on the roofs of tall buildings, supplementing their energy needs.
BERNOULLI EFFECT DIFFUSER AND CONCENTRATOR WIND GENERATORS

These designs are given different names: ducted fans, shrouded turbines and diffusers and depend on the Venturi effect.

The Vortec wind turbine concept is a bare wind turbine fitted with an aerodynamically designed diffuser. A diffuser followed by a concentrator can be used. Multiple diffusers can operate in tandem.

The Vortec design is based on technology originally developed by the Grumman Aerospace Corporation in the USA which included extensive wind tunnel testing. Grumman ultimately produced a power augmentation of approximately 6 times that of the same size bare turbine in their wind tunnel tests. A small scale demonstrator turbine was built in New Zealand to demonstrate the concept and has proved that an acceptable augmentation of wind power was achieved in the actual operating conditions of a wind turbine.

The prototype Vortec 7 was used for testing and verifying the Computational Fluid Dynamic (CFD) modeling to improve and optimize the diffuser topography and technology. The University of Auckland in New Zealand published in January 1998 the results of CFD studies which showed that the expected wind speedup effects, due to the diffuser, across the blade plane is not uniform as assumed by the Grumman Aerospace Company. The speedup effect decreases towards the hub of the turbine compared with the original assumptions by Grumman Aerospace, hence the power output of the Grumman design would be less than the high values first predicted by CFD computations.

Several retrofits have taken place guided by the CFD modeling undertaken by the Auckland University. These included the attachment of an aerodynamically shaped nose cone, the streamlining of the nacelle and fitting of vortex generators to keep flow attached to the diffuser wall and avoid flow separation. These improvements resulted in measured site power augmentation of 3 times at high wind speeds, and 4 times at low wind speeds. The best diffuser geometry may arise from CFD modeling.
Figure 24. Airfoil diffuser wind turbine design.

Figure 25. Single diffuser and concentrator wind turbine concepts.

Figure 26. Double diffuser turbine concept.
Figure 27. Vortec prototype model, New Zealand.

Figure 28. Conceptual design of a diffuser wind turbine.

The Vortec wind generator concept could cut the cost of wind power generation
one half by using light pre-stressed concrete cowlings to concentrate the wind velocities through the turbine. The wind energy is reported to be increased at the turbine by 175 percent or by a factor of 1.75. Since the power production is proportional to the cube of the wind speed according to Betz’s equation, such a concept could increase the power production for a given rotor size by a factor of:

$$\frac{P_1}{P_0} = \left(\frac{V_1}{V_0}\right)^3 = (1.75)^3 = 5.4$$ \hspace{1cm} (3)

or about five times, by being able to generate power in a broad spectrum of wind conditions.

The diffusers can be constructed vertically on the ground, eliminating the need for structural towers. Geometrically, a stacked helical vertical rotor blade system would be more convenient for such a system instead of the shown horizontal one.

Figure 29. Vertical airfoils diffuser concept. Manchester University.
Figure 30. Use of ducting in architectural design.

Figure 31. Marquiss Ducted wind turbine concept.

The Marquiss vertical rectangular duct turbine design enables the turbine to
continually orient itself into the wind. The ducted design is suggested to enable the turbine to effectively accelerate the wind speed as it passes through the turbine.

Figure 32. Diffuser associated with vortex generation.

A non-airfoil design of a diffuser suggests that vortices generation behind the
rotor blades would create a low pressure region that would accelerate the wind stream, and hence increase power production.

Figure 33. Vertical central cylinder diverts wind to small covered fans generators. The 200 ft tower is meant to avoid migratory bird flight paths. Source: Optiwind.

TECHNOLOGICAL HURDLES

To attain significant wind acceleration, a well shaped diffuser of 7-10 rotor diameters is needed. For a shorter shroud, slots or flaps to control the inner boundary layer could be used.
The intake duct must be well rounded and the diffuser smoothly and optimally flared to the end.

The rotation slot at the rotors tips should offer minimum friction.

These devices work wonderfully in the controlled environment of a wind tunnel with a homogeneous wind flow, in contrast to the prevailing random direction and turbulent flows in a natural wind stream. The wind offers a complete turbulent boundary layer of about 300 meters thickness, depending on the terrain. In fact, wind tunnel experiments with threefold rind flaps have achieved a concentration effect around 1.8.

If the yaw mechanism fails to direct the diffuser in the direction of the blowing wind large drag forces perpendicular to the diffuser axis would result that could dismantle the device.

A flow separation could occur at the inner wall of the intake resulting in the disappearance of the homogeneous flow needed for the concentration effect.

The diffuser is a large heavy structure that adds to the capital cost of the structure and making the yaw mechanism to orient the diffuser a difficult tasks.

The use of a gap between the shroud and the wing section can enhance the power ratio.

Figure 34. Multi airfoils diffuser configuration. Dimensions in mms.
Figure 35. Diffuser with a circular ring axial gap between the shroud and the circular wing can improve the power ratio from a value of 1.3 to a value of 19.5 for a value of the drag coefficient $C_D = 0.5$.

Figure 36. Shrouded turbine design is advocated as generating vortex trains to accelerate the wind flow across the rotor blades.
Figure 37. Conceptual design of three stationary ducts, jet engine inspired, dragonfly system uses either an external rotating wheel at the end (top) or three inner spinners (bottom). A front conical section directs the air flow and encloses the generator inside the nacelle.

SOLAR WIND TURBINE CONCEPT

A shell structure similar to the cooling towers of fossil and nuclear power stations would be constructed of solar energy absorbing material. With a lower opening, the buoyancy generated in the heated air creates a chimney effect. The inlet air from the bottom part would exit at the top transferring its energy to the blades of a wind turbine.

This suggests that the cooling towers of existing conventional power plants can be retrofitted at their top with wind turbines for added energy production from the heat rejected in the rising steam.

A hybrid variant of the concept would have the shell structure covered on its southern side with photo voltaic cells for a combined solar and wind electricity generation.
MAGNUS EFFECT AND AIRFOIL VEHICLES

MAGNUS EFFECT

The Magnus effect was described by Heinrich Magnus in Germany in 1853 and refers to the force produced on a rotating cylinder or sphere in an air or fluid stream. The rotating object creates its own boundary layer and whirlpool around itself and experiences a force perpendicular to the direction of the wind stream. An example of the Magnus effect is the curve ball thrown by a pitcher who imparts a spinning action with his fingers on a baseball. The same effect is observable in volleyball, tennis, golf, baseball soccer and especially ping pong because of the light weight of the ball.
For a rotating cylinder in a fluid the lift force is given by:

\[F = \frac{1}{2} \rho S V^2 \ell \]

where: \(\rho \) is the fluid density
\(S \) is the cross sectional area
\(\ell \) is the lift coefficient
\(V \) is the relative speed between fluid and cylinder

If a cylinder is spun in the direction of wind flow, the cylinder would experience a lift force designated as the Magnus force. A drag force also occurs in the direction of wind flow. The resultant force will move the cylinder in its direction.

MADARAS VEHICLE

Using movable rotating cylinders or airfoils mounted on closed tracks can extract wind energy from the high rotational speed acquired by the wheels. In this case no gearbox is required like in the classic unconfined wind turbine design.

Julius D. Madaras conducted studied over the period 1929-1934 on a large cylinder that is spun in the wind by an electric motor.

If the cylinder is mounted on a special kind of railroad car and the wind speed perpendicular to the railroad track is strong enough, the lift force would be adequate enough to overcome the frictional resistance of the wheels and tracks, and move the car along the tracks. Power can be extracted from the kinetic energy of the system by electrical generators attached to the wheels of the tracked vehicle. The system must be sturdy enough not to be overturned by a strong wind.

The cars would rotate around a circular race track. When the wind becomes parallel to the track, the cylinders rotation would be stopped and reversed in the opposite direction.

Madaras design consisted of 27 m high and 6.8 m diameter cylinders vertically mounted on flat cars. The cars formed an endless train of 18 cars around a 460 m diameter closed track. Generators geared to the cars axles would produce 18 MW of power when moving at a track speed of 8.9 m/s in a wind speed of 13 m/s.

More ambitious studies considered a racetrack 18 km long and 3 km wide oriented perpendicularly to the prevailing wind direction. The cylinders were 39.1 m in height and 4.9 m in diameter. The cars had a length of 19.2 m and a width of 17.4 m. The track width was 11 m between the rails. Each car would weigh 328 metric ton and each cylinder would be spun with a 0.45 MW, 500 Volts DC motors. Each of the 4 wheels on a car would drive a 0.25 MW generator for a total of 0.25 x 4 = 1 MW per car. An overhead trolley bus operating at 4.16 kV, 500 A three phase, would extract power from the system.

Wind tunnel and field tests were conducted to prove the feasibility of the system. Hurdles in the aerodynamic, mechanical and electrical losses and the system’s reliability remain to be solved.
A Magnus design with a rotating cylinder would catch the wind from all directions.

The cost of the vehicle tracking system must be balanced against the savings in the gear transmission that is used in blade driven wind turbines where they are used to increase the low rotational speed of the blades to the high rotational speed required by the electrical generator.
MAGNUS FLETTNER TURBINE

Anton Flettner built two sea-going ships, the first named Buckau, then renamed Baden-Baden crossed the Atlantic in 1926. The Magnus Flettner rotors allow a sailing vessel to turn about its own axis, apply brakes and go directly into reverse. They allow self-reefing at a chosen wind speed.

With a wind on her quarter, a ship would heel into the wind. The only disadvantage of these vessels is that they have to tack to move downwind. Energy has to be provided for electric motors to spin the rotors, but this was typically 5–10 percent of the engine power for a conventional ship of the same thrust.

After the Atlantic crossing, Flettner obtained orders for six more ships. He built one named Barbara, but had the rest cancelled as a result of the 1929 depression.

Flettner used drums of steel and, later, aluminum. Today much lighter ones could be built with Kevlar or carbon-reinforced epoxy materials.

The main problem was to find bearings capable of taking the large aerodynamic forces at high velocities despite the geometric distortions of heavily loaded structures.

The wind turbine manufacturer, Enercon, was said to be launching a Magnus Flettner rotor ship in 2008 with four rotors, 4 m in diameter and 27 m tall.

The lift forces of a spinning cylinder are higher than those of a textile sail or an aircraft wing having the same projected area. Potential theory predicts that the lift per unit length of rotor should be 2π times the product of the surface speed of the rotor and far-field wind speed.

For a constant rotor speed, it will rise with the first power of wind speed rather than with the square. If the rotor surface speed and wind speed are kept in proportion, square law equations can be used as in aircraft design for comparison with wings and sails.

The spin ratio, defined as local rotor speed over far-field wind speed in a frame moving with the vessel, acts such as the angle of incidence of the airfoil section of an aircraft wing.
Figure 42. Magnus Flettner rotor equipped ship first named Buckau then renamed Baden-Baden. Source: Popular Mechanics.

Figure 43. Magnus Flettner rotor equipped boat in a race with a sailboat. Source: Popular Mechanics.

Figure 44. Use of Magnus Flettner rotor in a wind turbine concept.
ENERCON E-SHIP 1

Figure 46. E-Ship 1 uses four giant 25 m high, 4 m in diameter, rotating, vertical metal sailing Magnus-Flettner rotors positioned two fore and two aft to harness wind energy.

The name E-Ship 1 E stands for: Enercon, and is also claimed to represent Electro-technology, Environment, Economy, Ecology Energy, Earth, Endurance, Encouragement, Experience, and Experiment.
The ship was constructed at Lindenau GmbH shipyards, Kiel and was launched on August 2, 2008. Its main components such as sailing rotors, the highly efficient main engines, and the ship’s streamlined silhouette above and below the water line. It has been designed to cut down fuel costs by 30 percent.

Table 1. Technical specifications of E-Ship 1.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>130.0 m</td>
</tr>
<tr>
<td>Width</td>
<td>22.5 m</td>
</tr>
<tr>
<td>Draught</td>
<td>6-9 m</td>
</tr>
<tr>
<td>Tonnage</td>
<td>10,500 tdw / 9,700 tdw</td>
</tr>
<tr>
<td>Speed</td>
<td>17.5 knots</td>
</tr>
<tr>
<td>Engine power</td>
<td>2 x 3.5 MW</td>
</tr>
<tr>
<td>Capacity, 3 holds below deck</td>
<td>20,580 m³</td>
</tr>
<tr>
<td>Ice class</td>
<td>E3</td>
</tr>
</tbody>
</table>

Enercon plans on using the vessel to transport wind turbines and components worldwide by 2009.

THOM ROTOR

Part of the drag on an aircraft wing is due to the permanent tip vortex generated by the positive pressure on the under surface driving air to the negative pressure on the upper surface. The effect can be minimized by high aspect-ratio wings, such as those of the albatross, and by tip fins. For this reason, Flettner added discs to the tops of his rotors.

As a further design development, Thom in 1934 experimented with multiple discs or fences and found that they produced very much higher lift coefficients and sometimes even negative drag coefficients.

The negative drag coefficients imply that some forward drive power is being taken from the rotor drive.
Figure 47. Cloudia catamaran with Thom rotor.

Figure 48. Conceptual design of cloud seeding autonomous ship with Thom rotors.
LESH ROTOR

Unlike the Magnus Flettner rotor which needs to be rotated by an electrical motor, Laurence J. Lesh uses vertical boat that would start spinning in a blowing wing. They continue spinning until the wind dies out or the brakes are applied. It is suggested that such a configuration would give four times the propelling power of ordinary sails. Rotors can be covered with canvas, plywood or polished aluminum.

The rotor can spin equally well in either direction compared with a Savonius which would require a mechanism to shift the halves of the rotor when a ship heads in the opposite direction.
Figure 50. Lawrence J. Lesh Rotor compared with Magnus Flettner and Savonius rotors.

Figure 51. Barrel blade experiment, USA, 1983.

SPIRAL MAGNUS

The Spiral Magnus Wind Turbine does not make use of common propeller-type rotor blades. Instead, the technology makes use of cylinder-shaped blades with spirally-arranged fins attached around the cylinders.

The result is a wind turbine that claims higher efficiencies in lower wind speeds than traditional wind turbines. Because the rotational speed is about one-sixth of
common propeller types, these turbines are relatively quiet and gale winds resistant. The Magnus Effect lift turns the turbines by spinning cylinders in a wind stream.

Each of the five blades in the form of cylinders spins driven by a built-in electrical motor and wind blowing through the cylinders rotates the rotor.

Figure 52. Spiral Magnus wind turbine. Source: Mecaro.

WIND TURBINE DRIVEN BOAT
A wind turbine has been incorporated into a catamaran design, Revelation II. The power from the wind turbine is transmitted to propeller. The design must overcome both the wave resistance and the wind drag on the turbine.

Figure 53. Revelation II wind turbine powered catamaran.
Figure 54. Edward Niklaus Breitung patent for the electrical generation on boats, 1916.

KITE DRIVEN BOAT

A kite has been used to help enhance cargo ship propulsion, and was tested for fuel-saving on transatlantic trips.

Figure 55. Kite power-assisted cargo ship.
IMPULSE, DRAG CROSS WIND, SAVONIUS DEVICES

These impulse or drag concepts do not use airfoils and have been used in rugged circumstances by tinkerers using available material supplies such as oil drums split in half lengthwise then welded the two halves together with an offset from each other to catch the wind, in a concept developed by S. J. Savonius in Finland, or even simpler cross wind paddle designs.

Savonius reported an efficiency of 31 percent in a wind tunnel test and 37 percent in free air. He did not specify in detail his configurations to be duplicated by others.

The advantages of the Savonius design is its great construction simplicity and high starting torque. The disadvantages are the weight of the materials and the need to design the rotor to withstand high winds.

Figure 56. Cross wind paddle designs.

The Savonius concept includes single and multi bladed wheel designs.

Figure 57. Single and multi-bladed Savonius wheels.
Figure 58. Drag force rotation of single bladed Savonius wheel.

Figure 59. Split Savonius blades use mixed lift and impulse drag forces.

Figure 60. Savonius turbines associated with advertising panels attached to preexisting light poles. Source: We Power.

A variant of the concept is the offset split Savonius blades configuration which uses mixed drag and lift forces.

The best representative of impulse drag systems is the multi bladed American farm wind mill design.

Another drag design uses rotating cups as in the case of a wind anemometer. Still
another uses drag plates, but its efficiency is enhanced by using a shield. An evolution of this concept is the gyromill design. An example of it is the Stephan Hooper 1816 design.

Figure 61. American farm windmill multi bladed impulse/drag turbine design.

Figure 62. Impulse drag cupped turbine.

Figure 63. Plates impulse drag turbine with a shield.
MULTI ROTORS DESIGNS

Counter rotating rotors would lead to the cancellation of some of the torsional loading of single bladed systems.

Another unexplored advantage is that an electrical generator with counter rotating stator and rotor would constitute a direct drive system eliminating the need to use a gear box.
The relative costs of the structural towers and the rotors assemblies may justify the positioning of multiple turbines on a single tower structure.

Multiple blades on a single rotor shaft can also be considered.
Bicycle wheels turbines have been offered as providing higher vibrational stability.

Multiple rotors enclosed on outside rims can use a single structural tower and feed a single electrical generator with their outside rims in a bicycle wheel-looking device.
Figure 70. Multiple rotors sharing a single tower and feeding a single electrical generator with their outside rims.

Figure 71. Rim electrical generator with magnets at the blade tips design. Source: Honeywell International.

TURBINE BLADED SPIRAL DESIGN
Instead of rotors or cups a turbine bladed design has been suggested. It has been implemented as a vertical helical turbine system for small applications.

Figure 72. Turbine bladed design of a wind generator.
HORIZONTAL AXIS SPIRAL

This concept would use spiral rotors extended between two vertical towers or poles, taking advantage of the higher wind speeds at higher elevations above the ground.
At one end a generator would convert the rotational energy induced by wind breezes into electrical power. The spiral rotor could extend between two buildings in the urban environment and between electrical poles in the rural environment.

Figure 75. Spiral rotor turbine extended between two towers.

"UPDRAFT" TOWER CONCEPT

In an updraft tower concept, air is heated in a greenhouse glass enclosure, causing a wind updraft to drive turbines at the top or bottom of the tower.

Figure 76. Updraft wind Tower concept with a greenhouse and turbines on the ground.
CONVECTIVE “DOWNDRAFT” TOWER CONCEPT

As originally conceived by Phillip Carlson in a 1975 USA patent, a downdraft can be created by the evaporation of cold water that is sprayed at the top of a tall tower in the shape of a hexagon or a cylinder. Spraying the cold water on the hot air at the top of the tower would cause the cooled air to create a down-burst as happens in storms, falling down through the tower and driving turbines at its bottom. Structures reaching 300-1,400 m in height and 100 m in diameter are contemplated. A demonstration plant of 400 m in height was considered with a net energy output of 6.5-10 MW.

The concept would alleviate the intermittency problem of wind and solar processes in that it can operate continuously reaching a 50-60 percent capacity factor and generating downdraft wind speeds in the range of 50 mph. The sprayed water can be considered for desalination purposes. It relies on the pressure drop created as a result of the difference in the relative humidity between the bottom and the top of the tower.

Figure 77. Downdraft tower concept with peripheral wind vanes [17].

A region of dry hot air without excessive relative humidity is chosen for the construction of a tall tower. The tower reaches up into the sky and accesses the hot dry air as it drifts down towards the ground. Across the top of the tower a mist of fresh or sea water is sprayed. The hot, dry air absorbs the water, becomes heavy and sinks down, creating a downdraft. The heavier, wetter air flows to the bottom of the tower where it is channeled into wind tunnels with turbines for power generation.

Hot and humid areas such the state of Florida would be unsuitable for the application. The Southwest USA and the Middle East, North Africa, parts of Australia, and parts of South America, would be suitable hot and dry areas.

The size of the tower creates a large sail area with high speed winds. To stabilize the tower, large fins that structurally flow all the way to the ground would capture the prevailing wind and channel it down the side of the tower into separate wind tunnels.
George Hadley (1735) first described the global cyclic flow where hot and humid air rises above the equatorial belt. The rising air cools down, its water vapor content condenses and rain is generated. The rate of rising air cooling with moisture condensation is about $\frac{1}{2} \, ^{\circ}C$ per 100 m. The air then turns south and north and descends back to the Earth’s surface from a height of up to 10 kms, at a latitude of 15-35 degrees north or south. The descending air warms up by $1 \, ^{\circ}C$ centigrade every 100 m and high-pressure air belts are formed. The air turns back towards the equator picking up moisture and heat again. The areas of air descent turn into arid lands. The hot and dry air causes the formation of the desert areas, it is not the desert areas that create hot and dry air. About 17 million km2 of extreme desert and some 25 million km2 of arid lands are formed by the descending air and extra-heat. A typical rate of air descent is 1 cm/sec.

The Hadley Cell atmospheric circulation in the world’s arid regions carries in the order of $2-4 \times 10^{16}$ kWhr of energy per year. For an overall thermal conversion efficiency of 1 percent and an energy consumption of 5,000 kwhr / year per capita, this can sustain a world population of:
The large dimensions of the structure and the clearance of the unevaporated spray of brine droplets are considered as causes of concern. The last problem can be solved by precipitation of the salt brine before the air is released and the use of fresh desalinated water. The precipitation would take place in a special area where it can be collected and later returned to the sea without solid salt being released.

The turbines could be of the Kaplan reaction and axial flow type used in hydroelectric power applications. The solidity of the turbine, which is the ratio of the blades area to the overall aperture area, could be high, typically with 8 blades and 30 guide vanes.

The tower would use the technique of self-erecting cranes deployed to build tall buildings in the Middle East. Cranes ride up with the building during construction and are not attached to the ground. Elevators lift the materials up to the crane, so the cranes can pick materials off the elevator and put it in place. After construction, helicopters are used to remove the cranes.

Clean Wind Energy, a Maryland-based firm would use 1,750 acres of federal land along the border of San Luis, Arizona for two 3,000-foot-high downdraft towers. The land would be leased from the USA Bureau of Reclamation along the USA-Mexican border. The towers would use wind to generate 2,500 MW of electricity. Water from the Sea of Cortez in Mexico would be desalted and piped to the site of the towers, which would be hollow cylinders equipped at the top with sprayers.

STALK WIND GENERATORS

![Figure 78. Stalk wind generators.](image_url)
New York design firm Atelier DNA suggests the replacement of rotor blades with stalks resembling thin cattails. They would generate electricity when the wind sets them waving. The design is planned for the city of Masdar, a 2.3-square-mile, automobile-free area being built outside of Abu Dhabi.

The design calls for 1,203 stalks, each 180-feet high with concrete bases that are between about 33-66 feet wide. The carbon-fiber stalks, reinforced with resin, are about a foot wide at the base tapering to about 2 inches at the top. Each stalk will contain alternating layers of electrodes and ceramic discs made from piezoelectric material, which generates a current when placed under pressure. The discs will compress as they sway in the wind, creating a charge.

The Windstalk wind farm spans 280,000 square feet. Based on rough estimates, the output would be comparable to that of a conventional wind farm covering the same area. The system is efficient in that there is no frictional loss associated with more mechanical systems such as conventional wind turbines. Each base is slightly different, and is sloped so that rain will funnel into the areas between the concrete to help plants grow wild. These bases form a sort of public park space and serve a technological purpose. Each one contains a torque generator that converts the kinetic energy from the stalk into energy using shock absorber cylinders.

Two large chambers below the whole site will work like a battery to store energy. The idea is based on existing hydroelectric pumped storage systems. Water in the upper chamber will flow through turbines to the lower chamber, releasing stored energy until the wind starts up again.

The top of each tall stalk has an LED lamp that glows when the wind is blowing - more intensely during strong winds and not all when the air is still. The firm anticipates that the stalks will behave naturally, vibrating and fluttering in the air. The Windstalk concept is silent, and the image associated with them is something we are already used to seeing in a field of wheat or reeds in a marsh.

The electrical output could be increased with a denser array of stalks. Density is not possible with conventional turbines, which need to be spaced about three times the rotor's diameter in order to avoid air turbulence. It works on chaos and turbulence so they can be installed much closer together.

The Windstalk idea can be envisioned to be built underwater. Designated as Wavestalk, the whole system would be inverted to harness energy from the flow of ocean currents and waves.

MAGNETICALLY LEVITATED, MAGLEV TOWER CONCEPT
A magnetically levitated tower concept has been advanced, but not tested.

AIRBORNE WIND TURBINES

To take advantage of the higher wind speed at greater heights, different airborne concepts that are tethered to the ground have been advanced. Some of the generated power keeps the platform airborne, and the excess is transmitted through the tether to the ground as electricity from an airborne generator.
Figure 80. Airborne tethered rotating blades concept.

Figure 81. Airfoil airborne turbines. Source: Makami Power.
Figure 82. Helium balloon kite flies at a 1,000 ft height. Source: Magenn.

Figure 83. Conceptual wind power generation using surfing power kites. Source: KiteNRG.
SHARK RIBLETS DESIGN

Figure 84. Shark riblets for rotor surface drag reduction.

Sharks stay remarkably clear of algae because of their unique skin, covered with microscopic patterns called denticles, which help reduce drag and keep other organisms from hitching free rides. NASA scientists copied the patterns to create drag-reducing patterns called “riblets.” They worked with 3M to adapt the riblets to a thin film used to coat the hull of the sailboat Stars & Stripes, which won an Olympic medal and the America's. Adaptation to the surface of rotor blades reduces drag as well as prevents accumulation of a layer of dead-insect bodies.

WIND WAKE VORTICES TURBINE SITING

John Dabiri of California Institute of Technology (Caltech) built an experimental wind farm: the Caltech Field Laboratory for Optimized Wind Energy (FLOWE), in which the location of turbines relative to each other takes advantage of the air flow among them.

Figure 85. Caltech Field Laboratory for Optimized Wind Energy (FLOWE). Source: John
Dabri.

When the VAWTs are closely packed together, they mimic a school of fish or a flock of birds. The vortices that form result in a high energy density field. The VAWTs can be built smaller and shorter at 30 feet above the ground.

DISCUSSION

Extracting energy from the wind will continue to challenge the ingenuity and the imagination of the human mind both through the invention of new devices or the re-invention of the older concepts using newly available materials or control systems.

REFERENCES