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INTRODUCTION 
 

 The situation arises where one needs to consider the transient changes resulting 

from the departure of the reactor condition from the critical state.  This arises under the 

the conditions of: 

 

1. Startup, 

2, Shutdown, 

3. Accidental disturbances in the course of what is intended to be steady state operation. 

 

 The power produced during a reactor transient is one of the most important 

factors determining the degree of damage that can ensue from an accident. 

 The time dependent power production is related to the effective multiplication 

factor keff and the prompt and delayed neutron properties through the reactor kinetic 

equations.  The spacial distribution of the reactor neutron flux is ignored in favor of an 

emphasis on its time behavior.  The reactor is viewed as a point, hence the terminology of 

point reactor kinetics.  In this regard, a distinction must be made between the behaviors 

of the prompt and delayed neutrons. 

 

REACTIVITY DEFINITION 
 

 A critical reactor has an effective multiplication factor keff equal to unity.  When a 

nuclear reactor deviates from criticality its effective multiplication factor can be larger or 

less than unity.  In this case it has an “excess multiplication factor”: 

 

    1ex effk k   

 

which can be positive or negative. 

 The ratio of the excess multiplication factor to the effective multiplication factor is 

designated as the “excess reactivity” or simply, “reactivity”: 
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 The reactivity describes the deviation of a reactor’s effective multiplication factor 

from unity under time dependent conditions.  For a steady-state or critical reactor the 

reactivity is zero.   

 If the deviation from criticality is small, such as caused by small deviations in 

temperature or voids during normal operation, the reactivity can be expressed as: 
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 In terms of the reactivity, the effective multiplication factor is expressed as: 
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and the excess reactivity can be expressed as: 
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 The reactivity may be short lived because of some change in the system’s 

temperature pressure or load.  It may also develop over a long period of time because of 

fuel burnup, and the accumulation of fission products.   

 To hold the reactor power constant, means are devised to keep its reactivity 

constant such as the control rods or the chemical shim, which is a neutron absorber in the 

coolant or moderator. 

 

PROMPT AND DELAYED NEUTRONS 
 

 About 99 percent of the fission neutron are designated as “prompt neutrons” since 

they are emitted within a short time interval 0f 10-17 sec of the fission process.  The 

remaining neutrons are delayed in their emission in the process of the radioactive decay 

of the fission products to several minutes beyond the fission process itself and are 

designated as “delayed neutrons.” 

 As an example, is the delayed neutron emission from the fission product isotope 

Br87 which has a half life of 55.6 seconds.  The beta decay of Br87 through its two main 

branches of 2.6 and 8 MeV electrons leads to the formation of Kr87 in its ground state, 

and it subsequently decays through two successive beta emissions into the stable isotope 

Sr87.  Instead, it is possible for the delayed neutron precursor Br87 nucleus to beta decay 

into an excited state of the Kr87 nucleus at an energy of 5.5 MeV which is  larger than the 

binding energy of a neutron in the Kr87 nucleus.  In this case, the beta emission is 

followed by a neutron emission leading to the stable Kr86 isotope. 

 The fraction of delayed neutrons from U235 is only  = 0.0065, while it is smaller 

for Pu239 at  = 0.0021.  The occurrence of delayed neutrons is crucial for the control of 

nuclear reactors.  Their presence, even though small, provides a long time-constant that 

slows the dynamic time response of a nuclear reactor to make it controllable by the 

withdrawal and insertion of control rods containing nuclear absorbing materials such as 

boron. 

 The weighted average of the mean lifetime of the delayed neutrons is much larger 

than that of the prompt neutrons.   

 





 

 

 The delayed neutrons play a major role in determining the time behavior.  An 

example of delayed neutrons emission is that from Br87. 

 Under these circumstances, the neutron flux equations are coupled to the heat 

transfer and coolant flow equations. 

 

Class III: Minutes to days 

 

 These are due to unstable fission products of large absorption cross section such 

as xenon oscillations.  Xenon production occurs through the fission of the fissile isotopes 

such as: 
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Class IV: Days to years 

 

 These are due to change in the composition of the reactor core as the fuel is 

depleted and stable fission products, which are often poisons to the system, build up. 

 Class I events can be regarded as a special case of Class II, and Class III as a 

special case of Class IV.  Classes I and II have a tine dependence arising from a lack of 

balance between the sources of neutrons and the leakage and absorption. 

 The time dependent diffusion equation states that the rate of change of the number 

of neutrons in a unit volume is just equal to the production rate of neutrons in the unit 

volume minus the loss rate: 
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DELAYED NEUTRON PARAMETERS 
 

 If we consider N delayed neutron groups, usually taken as 6, then the number of 

delayed neutrons produced per unit volume in the steady state is: 

 

3
1

i

neutrons
( ) [ ]

cm .sec

where: ( ) is the concentration of the beta emitter i, which is a 

precursor of a delayed neutron emitter

is a decay constant for the neutron emitter of the i-th type.

N

d i i

i

i

n C r

C r









  (2) 

 

 At steady state operation of a reactor, the generated fission products from fission 

are equal to those decaying through radioactive decay, thus: 
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 The total number of delayed and prompt neutrons produced per unit volume per unit 

time will be: 
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where:  is the delayed neutrons fraction from fissions. 

 This  is related to the fraction of neutrons from fission which is produced by the i-

th delayed neutron precursor group by: 
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POINT REACTOR KINETIC EQUATIONS FOR A NON 

STATIONARY ONE GROUP BARE REACTOR WITH DELAYED 

NEUTRONS 
 

 In this case the reactor is not critical and its effective multiplication factor will be 

different from unity: 
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where:  

2

is the macroscopic fuel absorption cross section,

is the total absorption cross section,

B is the geometric buckling.
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 The equations governing the precursors concentrations will be a modification of 

Eqn. 3 accounting for the time dependence as: 
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 The average energies of the delayed neutrons range from about 0.25 to 0.62 MeV.  

The balance equation for the thermal neutrons in terms of the flux is Eqn. 1, with a source 

term: 
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 Substituting Eqn. 8 into Eq. 1 yields: 
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 It is reasonable to suppose that the spatial variation of the concentration of delayed 

neutrons precursors is proportional to that of the neutron flux and that this mode persists 

even though the magnitude of the flux changes with time.  Thus let us assume: 
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where: 
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and the boundary condition at the extrapolated radius of the reactor: 

 

   ( ) 0extrapolatedF R  , 

 

apply. 

 

 Substituting into Eq. 9 yields: 
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 These reactor kinetics equations are coupled linear first order differential equations.  

The simple case when the coefficients are constant in time is known to have solutions 

which are exponentials. 

 

SOLUTION OF THE REACTOR KINETIC EQUATIONS 
 

 For the case of constant coefficients, dividing into a, yields: 
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is the average thermal neutron lifetime, and t is the infinite medium thermal neutron 

lifetime: 
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 We attempt the exponential solutions 
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 Substitution into Eqn. 16 yields: 
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 Since the exponential functions are linearly independent, we require the following 

condition for the existence of a solution: 
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 Using Eqn. 20 and substituting Eqs. 19 into Eqn. 15, we get: 
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 Rearranging, we get: 
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 Thus Eqns. 20 and 21 are solutions to Eqns. 15 and 16, provided that the 

coefficients j are chosen to be the N’ solutions of the characteristic Eq. 20 for any value of 

the j’s. 

 

REACTIVITY EQUATION OF REACTOR KINETICS 
 

 An expression for the effective multiplication factor can be written as a function of 

 from Eqn 21 as: 
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 In terms of the reactivity : 
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 From which the reactivity can be expressed as equal to a continuous characteristic 

function F() as: 
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DELAYED NEUTRON PARAMETERS 
 

 The time behavior of the delayed neutrons is empirically divided into a number of 

groups, typically six, characterized with a decay constant, a half-life, and a yield constant 

from the fission process. 

 

Table 1. Six group delayed neutron parameters. 

 

Group 

Decay 

Constant 

i 

[sec-1] 

Mean 

life 

τi = l/i 

[sec] 

Half 

life 

ln 2/i 

[sec] 

Fission 

yield 

wi 

[n/fission] 

Fractional 

yield 

i 

Thermal fissions in U235 

1 0.0124 80.645 55.72 0.00052 0.000215 

2 0.0305 32.786 22.72 0.00346 0.001424 

3 0.111 9.009 6.22 0.00310 0.001274 

4 0.301 3.322 2.30 0.00624 0.002568 

5 1.14 0.877 0.610 0.00182 0.000748 

6 3.01 0.332 0.230 0.00066 0.000273 

Total    0.0158 0.0065 

Thermal fissions in U233 

1 0.0126 79.365 55.00 0.00057 0.000224 

2 0.0337 29.673 20.57 0.00197 0.000777 

3 0.139 7.194 5.00 0.00166 0.000655 

4 0.325 3.076 2.13 0.00184 0.000723 

5 1.13 0.884 0.615 0.00034 0.000133 

6 2.50 0.400 0.277 0.00022 0.000088 

Total    0.0066 0.0026 

Thermal fissions in Pu239 

1 0.0128 78.125 54.28 0.00021 0.000073 

2 0.0301 33.222 23.04 0.00182 0.000626 

3 0.124 8.064 5.60 0.00129 0.000443 

4 0.325 3.076 2.13 0.00199 0.000685 

5 1.12 0.892 0.618 0.00052 0.000181 

6 2.69 0.371 0.257 0.00027 0.000092 

Total    0.0061 0.0021 

Fast fissions in U238 

1 0.0132 75.757 52.38 0.00054 0.000190 

2 0.0321 31.152 21.58 0.00564 0.002030 

3 0.139 7.194 5.00 0.00667 0.002400 

4 0.358 2.793 1.93 0.01599 0.005740 



 

 

5 1.41 0.709 0.490 0.00927 0.003330 

6 4.02 0.248 0.172 0.00309 0.001110 

Total    0.0412 0.0148 

 

EFFECT OF EXISTENCE OF DELAYED NEUTRONS 
 

 Let the neutron population in a nuclear reactor at some t be n(t) and adopt a 

continuous population model.  The effective multiplication factor can defined as the 

number of neutrons in a neutron generation after an average neutron lifetime relative to the 

number in the previous generation: 
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 The change in the neutron population can be written as: 
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 The rate of change in the neutron population would be: 
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where: τ is the average neutron lifetime between generations. 

 

 Separating the variables and using limits integration we get: 
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 The neutron flux and consequently the reactor power will rise with a period: 
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according to the exponential growth equation: 
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 Hypothetically, but not practically, the power in a reactor will rise on the basis of 

the prompt neutrons quite rapidly in the absence of rapid negative feedback or corrective 

action.  For instance, for a graphite moderated reactor with keff = 1.001 or a 0.1 % excess 

reactivity, a period of 1 sec, the power increase in 5 seconds would be by a factor of: 
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 For an enriched uranium light water moderated reactor, the prompt neutron period 

would be hypothetically shorter around 0.1 sec resulting in an increase in power of: 
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 Reactors do not just respond to prompt neutrons, since practically the delayed 

neutrons also affect the response of the reactor.  The effect of the existence of delayed 

neutrons is an increase in the reactor period.  The mean lifetime is increased from  to the 

value: 
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 For U235, this is equal to 0.1 sec, with a resulting period of T = 0.1 / 0.001 = 100 sec 

and the power increase ratio within 5 seconds is a minor: 
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 Practically then, he reactor response is so slower due to the presence of delayed 

neutrons, that enough time is available for corrective or negative feed back actions. 

 This provides a simple argument about the time behavior of a reactor.  A more 

accurate representation is provided by the solution one group diffusion equation to the time 

dependent situation. 

 

e-FOLDING TIME 
 

 The relative reactor power and flux can be written as: 
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The time at which the reactor power or flux changes by a factor of e = 2.718, is called the e 

-folding time.  At this time: 

 

    

1

0

( )

1

eff
e

k

e

eff

P t
e e

P k










   


 

 

Thus we can also write: 
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EXAMPLE 

 

 A hypothetical reactor without delayed neutrons with an average neutron lifetime τ 

of 10-3 sec subject to an accidental 0.1 percent step increase in the effective multiplication 

factor above criticality will have: 
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Its power and flux ratios will be: 
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For this reactor, the flux and power will increase at the rate of e or 2.718 times per second. 

 A realistic reactor accounting for the delayed neutrons with a period τ of 50 sec will 

have: 
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For this reactor, the flux and power will increase at the minor rate of just 1.00002 times per 

second. 



 

 

 

INHOUR UNIT OF REACTIVITY 
 

 A common unit used to measure the reactivity is the inverse-hour; abbreviated as 

inhour.  One inhour is the amount of reactivity that would make the period of a reactor 

equal to 1 hour or 1x60x60 = 3,600 seconds. Thus: 
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EXAMPLE 
 

 In the previous example, a 1 hour period would require the reactivity to be: 
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DOLLAR UNIT OF REACTIVITY 
 

 The reactivity can be expressed in terms of the total delayed neutron fraction: 
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This introduces a unit commonly used to measure the reactivity.   

The dollar ($) unit is defined as the amount of reactivity equal to the delayed 

neutron fraction for the particular fuel in the reactor: 
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 The cent unit is one hundredth of the dollar unit.  This practice is convenient in that 

a reactivity value in dollars will essentially produce the same rate of flux and power rise for 

reactors containing the fissile fuels U233, U235 and Pu239. 

 

SOLUTION OF THE ONE GROUP TIME DEPENDENT DIFFUSION 

REACTIVITY EQUATION 
 

 Knowing the neutron lifetime and the delayed neutron properties, one can plot the 

characteristic function F() as a function of  and determine the discrete values i where 

the value of the reactivity intersects with the characteristic function. 

 The function F() has the following properties: 
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For a given positive or negative  there are N’ = N + 1 solutions for .  All solutions are 

real. 

When  is positive, there are six negative solutions and one positive one. 

When  is negative, there are seven negative solutions. 

 

 In a specific problem, the general solutions in Eqns. 19 must satisfy some initial 

conditions of the system, such as: 
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 The previous conditions provide a sufficient number of relations from which to 

compute the coefficients aj and γi j since the j values are known.   

 Thus: 
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with: 
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which results in (N+1)2 equations for (N+1)2 unknowns.   





 

 

 

will be negligible in comparison with the first term 1te .  Thus after some time: 
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 For a small and positive reactivity, let us expand in a Taylor’s series about  = 0, 

thus: 
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 From which: 
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 Thus the neutron flux becomes: 
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 The reactor period becomes: 
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 Comparison to the previously obtained result for a reactor without a delayed 

neutrons contribution: 
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shows that the effect of delayed neutrons is to increase the effective mean life-time of the 

neutrons. 

 The same result can be obtained heuristically as: 

 



 

 

  

*

1 2

1 2

1

1 1 1
(1 ) ( ) ( ) ... ( )N

N

N
i

i i

t t t t t

t

   
  





        

 
  (35) 

 

where the first term accounts for the prompt neutrons, and the other terms account for the 

delayed neutron groups. 

 The stable reactor period is defined as: 
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PROMPT CRITICALITY STATE 
 

 The prompt multiplication factor for prompt neutrons can be written as: 
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 The prompt criticality condition can be written as: 
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 From the perspective of reactor safety, very small periods must be avoided.  If the 

reactor period is too small, the reactor power may increase at a rate faster than the 

shutdown systems rate of intervention. 

 The reactor period decreases with increased reactivity.  For small positive reactivity 

additions, the period is long and nearly independent of the neutron lifetime.  There exists a 

precipitous drop in the period length for short average neutron generation time about the 

prompt critical value of: 
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Figure 3. Reactor reactivity and period for different neutron generation times. 

 

ONE DELAYED NEUTRONS GROUP POINT REACTOR KINETIC 

MODEL ANALYTICAL SOLUTION 
 

 This result can be obtained by setting N=1, leading to: 
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Thus we can write: 
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If we denote the initial conditions at time t = 0 as: 
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and from the equations: 
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we get: 
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We have four equations in four unknowns: 
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which can be solved to obtain their values.   

 A relation between 0 0and X  can be obtained at time t = 0 for a single delayed 

neutron group: 
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 Substituting for γ1 and γ2 we get: 
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Substituting for a2: 
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From which: 
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Similarly: 
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The reactivity equation becomes: 
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This is a quadratic equation in : 
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Using the solution to the quadratic equation: 
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the quadratic has the solutions for a positive root 1 and a negative root 2 as: 
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FLUX TRANSIENT DUE TO A POSITIVE STEP REACTIVITY 

INSERTION 
 

 A typical transient in a nuclear reactor may involve the following numerical values 

of the kinetic parameters: 

 



 

 

    

1

0.00755

0.076 [sec]

0.001

0.001 [sec]t

















 

 

From these values we can calculate: 
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The flux coefficients become: 
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The expression for the flux becomes: 

 

    0 01145 6 644

0( ) (1.1486821 0.11486821 )t tt e e     

 

The second exponential decays rapidly and essentially 0.5 sec after introducing the 

reactivity, the neutron flux rises with the stable reactor period: 

 

    0 01145

0

( )
1.148682 tt

e



  

 

 To display such a transient, his was incorporated into the following computational 

procedure. 

 
! One delayed neutrons group point reactor kinetic model 

! Calculation of flux ratio in a reactor transient 

! Procedure saves output to file:output1 

! This output file can be exported to a plotting routine 

! M. Ragheb, University of Illinois 

 program flux_transient 

 integer :: steps=100 

 real flux_ratio(101),t(101),beta,rho,lambda,taverage,deltat 

! Calculational time step 

 deltat=0.1 

! Delayed neutron fraction 

 beta=0.00755 

! Delayed group decay constant 

 lambda=0.076 

! Reactivity insertion  

 rho=0.001 

! Average thermal neutron lifetime 

 taverage=0.001 



 

 

 write(*,*) beta,lambda,rho,taverage 

! Open output file 

 open(10,file='output1') 

! Calculate roots of reactivity equation 

 x1=taverage*(rho-1.0) 

 x2=(rho*(1.0+taverage*lambda))-(beta+(taverage*lambda)) 

 x3=x2/x1 

 x4=x3*x3-(4.0*lambda*rho/x1) 

 x5=(sqrt(x4))/2.0 

 x6=x2/(2.0*x1) 

 alpha1=-x6+x5 

 alpha2=-x6-x5 

 write(*,*) alpha1, alpha2 

! Calculate flux coefficients 

 x7=alpha2-alpha1 

 a1=alpha2*(alpha1+lambda)/(lambda*x7) 

 a2=-alpha1*(alpha2+lambda)/(lambda*x7) 

 write(*,*)a1,a2 

! Calculate flux ratio 

 steps = steps + 1 

 do i =  1, steps 

  t(i)=(i-1)*deltat 

  flux_ratio(i)=a1*exp(alpha1*t(i))+a2*exp(alpha2*t(i)) 

! Display results on screen 

  write(*,*) t(i), flux_ratio(i) 

!  pause 

 end do 

!   Write final result 

 do i =  1, steps 

! Write results on output file 

 write(10,*) t(i), flux_ratio(i) 

 end do 

 end 

 

Figure 4. Procedure for a reactor transient involving the addition of a reactivity  = 0.001 

using the one group of delayed neutrons point reactor kinetic model. 
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rather than the total reactivity available. 

 Several reasons can be advanced for the argument.  First, the rate of reactivity 

addition determines the time available to detect the transient and shut down the reactor 

before a prompt critical condition is reached.  Second, if a prompt criticality condition were 

reached, the power rise would be so rapid that the electro-mechanical shutdown systems 

would not act fast enough to terminate the excursion.  Third, either inherent feedback 

mechanisms or core damage would terminate the prompt critical stage before all the 

reactivity is added. 

 The time at which the reactor would reach prompt criticality would be: 

 

    
promptt

c


 , 

 

and the power ratio: 
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would increase with the increased ramp rate c. 

 To prevent a potentially prompt critical excursion, either the transient must be 

detected at a time sufficiently long before tprompt, or the reactor design must depend on the 

inherent feedback mechanisms in such a way as to assure that they override the reactivity 

addition mechanism before prompt criticality is reached. 

 

REACTOR STARTUP 
 

 The inherent feedback mechanisms tend to be negligible if the reactor power is not 

at least a few percent of the full power value such as under startup or zero power testing 

conditions. 

 Only well-informed and educated reactor operators are aware that a reactor could 

reach a prompt criticality stage at a power level below that at which any of the negative 

temperature feedback mechanisms would become functional.  At this stage, none of the 

instrumentation measuring the reactor thermal parameters such as the core outlet 

temperature or primary system pressure would detect the initiation of the transient before 

prompt criticality is reached.  

 In this case, a reactor period meter would be depended upon to detect the transient 

initiation regardless of the rector power level.  Considering the time dependence of the 

reactor power ratio: 
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 The startup transient safety analysis id hypothesized as consisting of an addition to 

a ramp reactivity to the reactivity state of the subcritical system as: 
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 As the ramp reactivity addition is increased, the power at which the reactor reaches 

prompt criticality becomes smaller.  For this reason it is desirable during startup to have a 

small rate of reactivity addition through small control rod worths and small control rods 

withdrawal speeds.   

 In addition since P0 is proportional to the external source strength and it is desired 

to have as small a power ratio as possible, then as large a source as possible is needed. 

 

SHUTDOWN REACTIVITY 
 

 The effectiveness of a nuclear reactor shutdown depends on several factors: 

 

1. The speed at which the control rods can be brought into the core. 

2. The rods incremental worth, defined as the decrease in reactivity per unit length of rod 

insertion. 

3. The fraction of a second time needed to transmit the electrical signals from the neutron 

flux detectors to the control rods actuators. 

4. The several seconds of time required to drive the rods far enough into the core to turn it 

into a subcritical state. 

 

 It must be noted that the incremental rod worth is largest when the rod tip passes 

through the high flux region at the core midplane.  About 0.7 second is needed to attain a 

full control rod worth.  For this reason the safe design of nuclear reactors requires the 

dependence on the feedback mechanisms to provide a faster action. 

 

FEEDBACK REACTIVITY COEFFICIENTS 
 

 Changes with time in the operating parameters of the nuclear reactor such as 

temperature, lead to reactivity changes.  These are described by different coefficients of  

reactivity.  Some of these coefficients are negative leading to a decrease in the reactor’s 

power, and some are positive.  The safe operation of a nuclear reactor requires that their 

overall sum be negative leading to an overall negative feedback effect damping any 

perturbations in the reactor power level. 

 The effects of the coefficients of reactivity are felt rapidly.  They are different from 

other long term reactivity changes which are slow and long ranging such as the one due to 

the change in the composition of the fuel due to fuel burnup, or fissile fuel production in a 

breeder reactor.  Fuel depletion causes a decrease in the power level, whereas breeding 

causes an increase.  The accumulation of the fission products absorbs neutrons and 

decreases the value of fuel utilization factor and hence the power level.  The temporary 

buildup of Xe135 after reactor shutdown affects the ability to restart the reactor. 

 



 

 

 TEMPERATURE COEFFICIENT OF REACTIVITY 

 

 The temperature coefficient of reactivity for a temperature T is defined as: 
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It may be negative or positive, leading to a decrease or increase in the reactivity following a 

decrease or increase in temperature.  A reactor with a negative temperature coefficient of 

reactivity is inherently safe. 

 The temperature changes to a reactor affect the reactivity in three ways: 

 

1. Altering the mean energy of the thermal neutrons in a thermal reactor, whereas the fast 

neutrons are unaffected trough the nuclear temperature coefficient. 

2. Affecting the densities of the reactor components such the coolant, fuel and moderator 

through the density temperature coefficient. 

3. Changing the dimensions and volume of the reactor’s core through the volume 

temperature coefficient. 

 

 Summing the three neutrons (n), density (d) and volumetric (v) contributions: 
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 The temperature coefficient is usually negative.  It is largest in homogeneous 

reactors where the density component predominates, resulting in the relative inherent safety 

of such systems.  Heterogeneous reactors that are solid fuelled are appreciably affected by 

density changes only if moderated by a liquid, such as in the case of the Pressurized Water 

Reactor (PWR) concept and solid moderated and circulating liquid-fuelled reactors in 

general.  Heterogeneous reactors in which the fuel and moderators are in solid form such as 

the graphite moderated gas cooled and sodium cooled reactors, are not substantially 

affected by the density changes and their temperature coefficients are relatively small. 

 We can write for the temperature coefficient of reactivity: 

 

   
2

1 1 1 1
(1 )

eff eff eff

T

eff eff eff eff

k dk dkd d d

dT dT k dT k k dT k dT





       

 

 Since: 
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 An important effect occurs in water moderated reactors where an increase in 

temperature decreases the water density causing an increase in the fuel utilization factor f, 

hence introduces a positive reactivity. 

 The temperature coefficient of the resonance escape probability p is significant in 

heterogeneous reactors.  In a water cooled reactor, a higher temperature causes some water 

expulsion from the core resulting in a lower moderator to fuel ratio.  The resonance escape 

probability has an exponential dependence on it, so that an increase in temperature reduces 

the value of p resulting in a negative temperature coefficient.   

 Light water reactors are undermoderated whereas the addition of hydrogen nuclei 

produces a positive effect on the resonance escape probability which is larger than the 

negative effect on the thermal utilization factor.  The overall effect of moderator expansion 

is negative.  In addition, the lower moderator density enhances leakage of both the thermal 

and fast neutron components.   

 If the moderator has a nuclear shim in the form of a burnable poison such a s boric 

acid to control the reactivity, the increase in the value of f could be significant enough to 

lead to a net positive effect. 

 The thermal neutrons nonleakage probability: 
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includes the buckling that varies inversely to the size of the reactor, as well as the diffusion 

length L.  The increase in the size of the reactor due to thermal expansion decreases the 

buckling, and enhances the leakage leading to an increase in the reactivity.  Some fast 

reactors are given a pancake shape to encourage high neutron leakage. 

 

 DOPPLER COEFFICIENT OF REACTIVITY 

 

 This effect primarily affects the resonance escape probability temperature 

coefficient in addition to the effect in the change in the moderator to fuel ratio.  The target 

nucleus in neutron interactions is not totally at rest since it is in thermal equilibrium and 

hence possesses a certain level of vibrational energy.  Its magnitude is small relative to the 

neutron energy and can be ignored in most cases.  The thermal motion is random in nature 

and has a component along the same direction as the incident interacting neutron.  This 

spreads the energy of the neutron around its actual energy.  This leads to a broadening of 

the resonances in the cross sections resonance region and is similar to the sound and light 

Doppler effect; hence its name.   

 





 

 

 Soft spectrum conditions occur if some reactor components such as sodium have a 

moderating effect on the neutrons, or if a moderator such as BeO is intentionally added to 

the core.  Since a soft spectrum spans a larger part of the resonance region than a hard one, 

this will result in a negative Doppler coefficient. 

 On the other hand, a hard spectrum reactor with highly enriched fuel such as in 

Naval Propulsion reactors, could have a positive Doppler coefficient.  The design of the 

reactor must preclude this situation from occurring. 

 

 NUCLEAR TEMPERATURE COEFFICIENT 

 

 This arises because of the effect of temperature on the thermal diffusion length L: 
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 The thermal diffusion length L varies with temperature due to the variation of the 

macroscopic absorption cross section with it.  Since the microscopic absorption cross 

section follows a 1/v behavior with neutron velocity and consequently energy, the diffusion 

length L will increase with an increase in temperature. 

 The magnitude of the nuclear temperature coefficient is proportional to L2, and is 

usually negative. 

 In sodium-cooled reactors, the expansion of the sodium with temperature reduces 

its small moderating ability and increases the average neutron energy.  This increases the 

regeneration factor and consequently the infinite medium multiplication factor, resulting in 

a positive nuclear coefficient. 

 

 DENSITY TEMPERATURE COEFFICIENT 

 

 This arises because of the change of the density of core materials with increasing 

temperature.  An increase in temperature decreases the density and hence the macroscopic 

scattering and absorption cross sections; 
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 This increases the mean free paths of the neutrons and therefore neutron leakage 

from the surface of the core.  The density temperature coefficient is proportional to an 

average linear coefficient of thermal expansion of the core materials and is usually 

negative. 

 A heterogeneous light water moderated reactor with a large moderator to fuel ratio, 

or over moderated reactors, may have a positive density coefficient.  Because light water is 

a neutron absorber, an initial decrease in its density would actually increase its 

multiplication factor since the decrease in neutron moderation has a larger effect than the 

decreased moderation.  Further decrease in density, though reverses the effect leading to a 

negative density coefficient. 

 



 

 

 VOLUME TEMPERATURE COEFFICIENT 

 

 This is caused by an overall increase of the reactor size and hence affects primarily 

the geometric buckling.  For a spherical core, the geometrical buckling is expressed in 

terms of the core radius R as: 
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 It is proportional to an average linear coefficient of expansion of core materials and 

core vessel.  It is usually positive but numerically is the smallest in magnitude of the three 

components of the temperature coefficient. 

 

 VOID COEFFICIENT OF REACTIVITY 

 

 In the situation of an inadvertent power surge, boiling could occur in a liquid 

moderator after it reaches its saturation temperature, forming vapor bubbles or voids.  The 

void coefficient is defined as: 
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where  here is the void fraction or the fraction of the volume of the moderator that is in 

the form of vapor. 

 Boiling Water Reactors (BWRs) are designed to operate with a fraction of the 

moderator in vapor form.  Pressurized Water Reactors (PWRs) can operate with a power 

surge of up to 20 percent increase in the nominal power level leading to temporary boiling.  

In a reactor with a normal fuel to moderator ratio, an increase in the void fraction results in 

decreased moderation and consequently a negative void coefficient. 

 In an overmoderated reactor with a high moderator to fuel ratio, the void coefficient 

may become positive.  In sodium cooled reactors, sodium voiding results in a positive void 

coefficient. 

 In heavy water moderated reactors the degree of moderation needed for operation 

with natural uranium fuel leads to a small positive void coefficient.  The subdivision in the 

pipework in the pressure tube design allows a loss of coolant transient to be easily 

terminated by the normal reactivity control mechanism.  The largest positive void 

coefficient occurs in the heavy water moderated CANDU designs, and the boiling light 

water designs such as the Chernobyl RBMK-1000.  Larger diameter fuel elements are used 

in this case to increase the time constant of heat transfer from the fuel to the coolant 

allowing the control system to reduce the reactor power before a significant void is formed. 

 The void coefficient is important in sodium cooled reactors.  Sodium voiding 

produces two important effects.  A reduction in scattering increases the average neutron 

energy in the core increasing the value of the regeneration factor coupled to an increase in 

fast fissions in U238 which has a threshold fission cross section at about 6.5 MeV.  This 

leads to a positive reactivity contribution.  The decrease in the coolant density, on the other 

hand leads to increased leakage which cancels the first effect.  The void coefficient can be 



 

 

made always negative by a suitable choice of the geometry of the core and by increasing 

the negative value of the Doppler broadening coefficient. 

 

 PRESSURE COEFFICIENT OF REACTIVITY 

 

 This is due to changes in the reactor pressure and is defined as: 
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 Since liquid densities are insensitive to pressure changes, moderators that remain in 

a solid of liquid form are unaffected by the pressure changes.   

 A BWR, however, is extremely sensitive to the pressure changes and has a large 

pressure coefficient which is usually positive.  These pressure changes can occur as a result 

of varying steam demand from the turbine.  If the turbine governor is closed, the reactor 

pressure rises causing the voids to collapse; thus increasing moderation and hence the 

reactor power level. 

 A large pressure coefficient occurs at low system pressures in BWRs and causes the 

reactor to be unstable.  It decreases rapidly with increasing pressure and becomes relatively 

small at high system pressures above several hundred psia. 
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