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INTRODUCTION 
 
 We consider the description of the slowing down in energy of neutrons through 
interaction with the nuclei of a moderator.  The analysis leads to a criticality equation that 
can be used to determine the critical dimensions of a medium in which neutrons are 
diffusing. 
 
THE SLOWING DOWN DENSITY 
 
 We define the slowing density q to be the number of neutrons per unit volume per 
unit time slowing down past the energy E or its corresponding lethargy u as shown for an 
infinite medium in Fig. 1. 
 

 
Fig. 1: Slowing down of neutrons in an infinite medium. 

 
 In this Figure, E0 is the fission energy, and Eth is the thermal energy.  All neutrons 
pass through every energy level and the slowing down density past any energy E is a 
constant: 
 
     q = q0      (1) 



 
which is also the number of neutrons per unit volume per unit time produced at the 
fission energy E0.  This is true provided there is no absorption while slowing down, or if 
the absorption is weak or negligible. 
 
THE AVERAGE LOGARITHMIC ENERGY DECREMENT 
 
 For any given scattering material of mass number A, the average logarithmic 
energy loss between energies E1 and E2 per collision is independent of energy and is 
defined as: 
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It is also the gain in “lethargy” per collision.  The lethargy, u means laziness.  A gain in 
lethargy is a loss in energy.  If E0 is the initial energy, usually the average fission energy 
at 2 MeV, then its energy after slowing down to thermal energy is: 
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Taking the natural logarithm of both sides yields: 
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or: 
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For any energy E, 
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and: 
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where the minus sign signifies a loss of energy. 
 If Eth = 0.0323 eV, then from Eqn. 4 the neutron’s lethargy is: 
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If we use the variable: 
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then the average logarithmic energy decrement is: 
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 The n umber of collisions to thermalize a neutron from the fission energy E0 to 
the thermal energy Eth can then be calculated from: 
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For a hydrogen moderator: 
 

     1ξ = , 
 
and from Eqns. 7 and 10, the number of collisions for a neutron to thermalize in a 
hydrogenous moderator is: 
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 In contrast in graphite or a carbon moderator, from Eqn. 9: 
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and the number of collisions to thermalization becomes: 
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It becomes apparent that a hydrogenous material is a better neutron moderator than 
graphite. 



 
 If a reactor is made up of a mixture of several materials, one can estimate the 
average logarithmic energy decrement from: 
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where N is the number of isotopes in the mixture and siΣ  is the macroscopic scattering 
cross section for the i-th isotope in the mixture. 
 
THE REMOVAL CROSS SECTION 
 
 We need to define the probability per unit length of a neutron losing all its energy 
above thermal.  This is also called the fast neutrons removal cross section: 
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Thus: 
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THE INVERSE ENERGY 1/E-FLUX DEPENDENCE 
 

 For a lethargy interval , u∆ u
ξ
∆ is the probability of a neutron making a collision 

in the interval , since u∆ ξ  is the lethargy gain per collision.  Since q is the number of 

neutrons per unit volume per unit time passing through u∆ , uq
ξ
∆  is the number of 

collisions per unit volume per unit time in the interval u∆ . Replacing  by du, and 
since: 
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we can write: 
 

   Number of collisions in intervaldE
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du qq d
Eξ ξ
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 Since absorptions are negligible, this is also equal to s dEφ−Σ , where φ  is the 
neutron flux. Thus: 
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For a weakly absorbing medium, the slowing down density q = q0, a constant.  If the 
scattering cross-section is also constant, then the flux is inversely proportional to the 
neutron energy: 
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THE FERMI AGE EQUATION 
 
 For a weakly absorbing medium of finite size, a neutron balance equation can be 
written for steady state and an interval of energy dE as: 
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This can be expressed mathematically as: 
 
        (16) 2 0aSdE dE D dEφ φ−Σ + ∇ =
 
 The source term for the interval dE is the number of neutrons slowing into dE 
minus the number of neutrons slowing out of dE: 
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 If we can neglect the absorptions in the fast region, then 0aΣ , and we can write 
Eqn. 16 as: 
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where we are now showing the dependence on the spatial position r, and the energy E. 
 If we rewrite Eqn. 13 as: 
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then Eqn. 18 can be written as: 
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Placing the spatial derivative at the left hand side, and the energy derivative at the right 
hand side, we get: 
 

   2 ( , )( , )
( )

sE q E rq E r
D E E
ξΣ ∂

∇ = −
∂

     (15) 

 
Let us define the quantity: 
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where τ  is called the Fermi Age, then we can write the “Fermi Age Equation” as: 
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Notice that the Fermi Age τ  has units of area, and not time.  However Eqn. 17 has the 
form of the parabolic Diffusion Equation encountered in mathematical physics where 
normally τ  is the time, hence the name given to it. 
 The Fermi Age of thermal neutrons can be estimated from Eqn. 16 as: 
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where FD  is the value of the diffusion coefficient  and of the macroscopic scattering 
cross section 

D

sΣ  averaged over the energy range. 
 From Eqn. 12, we can write an expression of the Fermi Age in terms of the fast 
neutron removal cross section: 
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which appears analogous to the expression for the thermal diffusion area: 
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 If sΣ  is independent of energy, and fast absorptions are negligible, the diffusion 
coefficient can be estimated from: 
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 If on the other hand, experimental values of the age τ  are known, then FD  can be 
determined instead from Eqn. 19. 
 
REACTOR CRITICALITY EQUATION BASED ON AGE THEORY 
 
 The thermal neutron diffusion equation from one-group theory can be written as: 
 
        (22) 2 0a f aD kφ φ φ∞∇ −Σ + Σ =
 
where f  is the neutrons fast non-leakage probability. 

Without fast absorptions, we say that: 0( )q E q= .  If absorptions exist, we define 
the resonance escape probability p as: 
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or: 
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Since the source term in the diffusion equation can be written as: 
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where we used the definition of the infinite medium multiplication factor as the four-
factor formula: 
 
   k pfηε∞ = ,       (26) 
 
the definition of the regeneration factor as: 
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and the definition of the fuel utilization factor as: 
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 By comparing Eqns. 24 and 25, we can deduce that: 
 

   (

( 0

f f

f f

f

S p
p
p q

)

)

ν ε φ

ν εφ

τ

= Σ

= Σ

= =

      (28) 

 
where: 
 
   ( 0) fq τ ν εφ= = Σ       (29) 
 
 Returning to the Age Equation, let us separate the variables as: 
 
   ( , ) ( )q r F R r( )τ τ=       (30) 
 
and substitute in Eqn. 17 to get: 
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 For a large unreflected or bare reactor, we can assume that the slowing down 
density has the same distribution as the thermal flux: 
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where 2

gB  is the geometric buckling. 
Thus: 
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Notice that the partial derivative is here replaced by a total derivative. 
 
Separating the variables and integrating: 
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which has a solution: 
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Taking the exponential of both sides: 
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Using Eqn. 30 we get: 
 
           (35) 
 



For an initial condition at 0τ =  we can use Eqn. 29 to estimate the value of the constant 
C: 
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from which: 
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Substituting in Eqn. 34: 
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The number of neutrons slowing down to the thermal energy is then obtained by 
multiplying by the resonance escape probability: 
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But , the thermal neutrons source term in the diffusion equation, which shows that 
the fast nonleakage probability is: 

thq = S
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We can write the diffusion equation in terms of Fermi Age theory from Eqn. 22 as: 
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Dividing by D, replacing: 
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Dividing by φ  and substituting: 
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we get: 
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Rearranging, we get the Fermi Age criticality equation as: 
 

   
2

2 21
1

g thB

eff
th g

k ek
L B

τ−
∞= =
+

      (41) 

 
SPECIAL CASES OF THE FERMI AGE THEORY CRITICALITY 
EQUATION 
 
 If the value of 2

g thB τ  is small, we can expand the exponential as: 
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which is analogous to the expression for the fast nonleakage probability encountered in 
the one-group theory diffusion theory: 
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 If the value of 2

fL  is needed in one or two-group diffusion theory, we solve the 
criticality Eqn. 41 for the buckling: 
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by iteration or by trial and error.  A good first approximation is as given by Eqn. 42, 
which leads to: 
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For a large reactor the fourth power of the buckling can be considered as small relative to 
the second power of the buckling, consequently: 
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where the “migration area” is defined as: 
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This yields the modified one group diffusion theory criticality equation for a large 
reactor: 
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 Knowing 2

gB , one can calculate 2
fL  from Eqn. 43 as: 

 

   
2

2 2

1
1

g thB
f

g f

e
B L

τ−= =
+

 

 
or: 
 

   
2

2
2

1g thB

f
g

eL
B

τ− −
=       (46) 

 
CRITICALITY CALCULATION OF A MODERATED 
HOMOGENEOUS REACTOR BASED ON AGE THEORY 
 
 As an exam ple of the use of Fermi Age theory for criticality calculations, we 
consider a graphite moderated reactor core with a migration area: 
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carbon moderator to uranium atomic ratio of: 
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resonance escape probability: 
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and age in graphiteas: 
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From Eqn. 26 the infinite medium multiplication factor is: 
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Using Eqn. 41 for criticality in Fermi Age theory: 
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Rearranging we get: 
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We can deduce the following transcendental equation to be solved graphically or by 
iteration for the value of the critical buckling: 
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A best starting value for the buckling is one that can be estimated from the modified one 
group diffusion theory as: 
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Applying the iteration formula in Eqn. 47, we get: 
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Thus the solution converged at the ninth iteration to four decimal places. 
 For a spherical reactor core the critical radius would be: 
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 For a cube, the critical side length would be; 
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 For a cylinder with a height to diameter ratio of unity: 
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the critical radius would be: 
 

   ( )
1

2

4

8.25 162.02[ ] 153.75
3.148 10

2 324.04[ ] (307.50)

c

c c

R c
x

H R cm

−
⎛ ⎞= =⎜ ⎟
⎝ ⎠
= =

m  

 



For comparison, the values obtained from the modified one-group theory are shown in 
parentheses next to each computed value.  From these critical dimensions, critical 
volumes and critical masses can be estimated. 
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